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ESSAYS ON MARITIME LOGISTIC MANAGEMENT

by Yu Wang

Department of Industrial Engineering and Logistics Management

The Hong Kong University of Science and Technology

ABSTRACT

Maritime logistics is one essential part of the global supply chain, enabling the globaliza-

tion of economy. It is of practical importance for improving the efficiency and reliability of

maritime logistics at multiple levels. This thesis studies two operational issues in maritime

logistics.

The first issue is about the concern on piracy attack, a serious security threat causing the

affected shipping routes more costly and less reliable. Piracy attack occurs in many areas

beyond the well-reported Somalia Pirates. By now, various strategic actions have been

taken to prevent piracy attacks, such as rerouting vessels to avoid the dangerous water

area, forming group transit and strengthening the navy patrols. However, these actions still

are not enough to eliminate the possibility of piracy attacks. Therefore, it is important for

a commercial vessel to be equipped with operational solutions in case of piracy attacks. In

particular, choosing a direction for quickly running away is a critical real-time decision for

the vessel.

This thesis starts analyzing a situation where a commercial vessel finds itself being

chased by one pirate skiff. The vessel wants to make a good decision to evade the chasing.

We formulate such an evading problem as a nonlinear optimal control problem. We consider

different policies such as maintaining a straight direction and making turns. We start

with the direct heading policy where the vessel will maintain its direction, and derive the

condition under which such a policy is feasible for the vessel to be safe. Then we extend to

the policy in which the vessel will make turns to evade the chasing. The feasibility condition

ix
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of these policies are derived, and we develop algorithms to optimize the policies under the

concept of Pareto-optimal policy.

Based on the above result, we extend our research to study the situation with multiple

pirate skiffs chasing one commercial vessel. The situation will become more complicated.

For example, there exists a most conservative one-turn policy against one skiff, but that is

not the case when there are two skiffs. Still, we are able to show that the policies derived

against one skiff can be modified for the more challenging problem.

The second issue is about planning containers transportation in feeder lines. We consider

a space allocation problem for a feeder vessel to collect/ deliver containers along its route.

A feeder vessel departs from a hub port, sequentially calling for a number of ports to

make container collection and delivery. There are two challenges in making the decision.

First, the capacity of the vessel is shared by two types of containers, laden ones collected

during the route and empty ones to deliver to each port, where the collection consumes the

capacity and the delivery releases the capacity. Second, the demand has also two types,

some demand having reservation made in advance but subject to random cancellation, some

demand coming purely from random spot market. With the commitment of fulfilling realized

demand with reservation, the vessel has to decide the fulfillment level to the demand on the

spot, so as to maximize the expected revenue of the whole trip. We formulate the problem

as a Markov decision process, and derive a two-dimensional threshold policy for serving the

demands based on the concept of discretely concavity.

The technical contribution of the thesis lies in the application of optimization. It involves

two different streams of optimization, nonlinear deterministic optimization and discrete

stochastic optimization, both being hard optimization problems. We are able to successfully

solve these problems with useful structural results revealed.

x
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CHAPTER I

INTRODUCTION

1.1 Research Background

With the globalization, maritime logistics is playing a more and more important role in

the global economy. Except for the huge opportunities, the globalization of the maritime

logistics also bring some new challenges.

The first challenge comes with the maritime security for the long-haul line. Researchers

have discussed the maritime safety and security problem from different perspectives, such

as the humanity dimension and the shipping operational factors. Moreover, Chang et al.[1]

undertake a survey to analyze the risk factors in container shipping based on the case of

Taiwan. They identified 35 risk factors that may lead to maritime safety and security

related damage from the literature review and advice from the container shipping industry.

Before conducting the empirical study, those 35 factors are divided into 3 groups according

to logistic flows in shipping operations, i.e., information flow, physical flow and finance flow.

The result shows that the risks associated with physical flow would lead to a higher risk

consequence, compared with the other two factors. One of the risk factor associated with

physical flow is the attacks from the pirates, which should be paid more attention to.

The most famous pirate in modern time is the Somalia pirates. Due to the enor-

mous efforts from the governments, international organizations and shipowners, the num-

ber of piracy attacks in Somalia is reduced significantly. However, the situation still re-

mains chaotic. The International Chamber of Commerce (ICC) International Maritime

Bureau’s(IMB) annual piracy report reveals that piracy and armed robbery on the world’s

seas is persisting at levels close to those in 2014, despite reductions in the number of ships hi-

jacked and crew captured. In somewhere, like South East Asia, the number of piracy attacks

continue to rise. Reported by the International Maritime Organization(IMO), Southeast

Asia now accounts for 60% of all incidents. The report also notes that the cyber risks in the

1
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maritime and shipping industry, which enables the pirates to identify target cargoes and

obtain about more vulnerable ships and locations, require industry attention.

In [2], Helmick discussed some feature of modern maritime piracy and the major im-

pacts and costs of piracy attacks on the global supply chain operations. He also discussed

some strategies that could be taken to avoid and deter the pirates, such as implement-

ing suggestions from BMP [3], enhancing antipiracy training, seeking military intervention,

forming corridors and group transits during piracy water area, and rerouting to avoid the

dangerous trade lanes and port zone. However, all of these high-level strategies will induce

huge cost to the global supply chains. An infographic released by Nature’s Water states

that the annual financial loss around the globe due to the piracy attack is about US$13-16

billion, with 75% of piracy incidents occurring in Aisa. In case of an accidental encounter

with the piracy attack, the vessel need be equipped with some operational solutions. In

Chapter 2, we consider an antipiracy problem from the perspective of operational level,

where a commercial vessel tries to get rid of the chasing from a pirate skiff. A simplest way

to evade the chasing is to choose the direction same as the pirate, which will result in the

biggest distance between the commercial vessel and the pirate skiff. However, the vessel

may move backward its original direction, which is not preferred. Hence, we consider some

other policies such that the vessel could arrive at a preferred position. Another policy is to

maintain its direction, called direct heading policy. We derive the feasibility condition for

this policy and conduct computational experiments on the Infeasible Region that the com-

mercial vessel need detect the suspected piracy activities. We also propose the one-turn and

two-turn policy when the direct heading policy is infeasible and characterize the optimal

turn policy. In general, there might be multiple skiffs chasing the commercial vessel, used

to be 2 skiffs [2]. Hence, we extend our results in Chapter 2 to the situation with two skiffs

and discuss how to find the optimal turn policy based on the result with only one skiff.

Another issue is about the service for the feeder lines. Generally, two regional ports in the

global maritime logistics system are not connected directly. Commodities and products from

the exported port are first transported to the corresponding hub port, and then transported

to other hub ports. After that, they will be distributed to their destination by feeder vessels.

2
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Feeder lines have provided for important transport connection between the regions and the

mainstream intercontinental lines. Different issues related to feeder lines could be addressed

from the perspective of different planning levels. From the perspective of strategic level and

tactical level, people are interested in the feeder line network design, including the selection

of hub port, allocating the regional ports, determining the calling sequence of the regional

ports and so on. Meanwhile, operational plannings in the feeder lines mainly focus on the

management of the feeder vessel, like optimal service speed, shipping capacity utilization

and amendment of routes. What we are interested in here is about the shipping capacity

utilization of the feeder vessel to enhance the efficiency of the maritime transportation.

In practice, a feeder vessel is designed to serve the regional ports on a regular basis

according to a fixed schedule. Generally, the vessel will take in-advance reservation before

it starts sailing, and in common sense, the reservation can be canceled without penalty.

In Chapter 4, we investigate a space allocation problem for a feeder vessel to decide the

number of laden containers to collect and the number of empty containers to deliver during

its trip along a predefined route. Besides the demand with reservation, there is demand on

spot market. The realized demand with reservation must be guaranteed while the demand

on spot market could be rejected. The optimal serving policy is derived, which also helps to

figure out the optimal shipping capacity of the feeder vessel to be deployed for this route.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we consider a problem where a

commercial vessel is chased by one pirate skiff. Different policies are considered for the vessel

and the conditions under which the policies are effective and safe for the vessel. Algorithms

are also developed to optimize the policies based on the concept of “Pareto optimal policy”.

In Chapter 3, we extend the result in the Chapter 2 to the situation where there are multiple

pirate skiffs chasing the commercial vessel individually. We discuss how to find a feasible

policy for the commercial vessel to evade all the skiffs, and to optimize the policy with some

computational results. In Chapter 4, we investigate a space allocation problem where a

feeder vessel needs to decide how to allocate its space by collecting a suitable number of

3
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laden containers and delivering a suitable number of empty containers during its trip and

derive the optimal serving policy. We summarize our major contribution in Chapter 5, and

preset the technical proofs in the Appendices.

4
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CHAPTER II

EVADING POLICIES FOR A VESSEL BEING CHASED

BY ONE PIRATE SKIFF

2.1 Introduction

Piracy attacking has been a constant threat to maritime transport for hundreds of years.

In the past decade, piracy attacks have headlined the news again in the media, mainly due

to the suddenly spreading attacks originating from the Somali area. With the tremendous

efforts from the international society, the situation of Somali piracy seems to be much

improved as of today. However, the severity of the piracy problem is actually much beyond

what had happened around the Somali coastal. According to ICC Commercial Crime

services (Table 2.1), there were 246 reported attacks worldwide in 2015, zero occurred

in the Somali area.

Table 2.1: Number of actual and attempted piracy attacks, 2010 - 2015
Locations 2010 2011 2012 2013 2014 2015

South- East Asia 70 80 104 128 141 147
Indian Subcontinent 23 10 11 12 21 11

Americas 40 25 17 18 4 8
Somalia/Gulf of Aden 219 236 75 15 11 0

Nigeria 19 10 27 31 18 14
Other Africa 17 47 48 32 26 21
Rest of World 57 31 15 28 24 45

Total 445 439 297 264 245 246

(source: https://www.icc-ccs.org)

A modern pirate group often operates by using motherships and skiffs (high speed small

boats). A mothership is a large slow ship carrying pirates, food, and fuel, enabling pirates

to extend their territory to a much larger area than before. Attacking skiffs with a high

speed are often towed behind the Motherships. Once identifying a commercial vessel as

target, pirates take skiffs, usually one or two, to rush to the vessel. The chasing may result

in gun fairs when the skiffs are close enough to the vessel, and pirates will start climbing

5
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up the vessel if the skiff can catch up with the vessel. Due to the limited fuel supply of

a skiff, the pirates will stop chasing after certain time without getting close to the vessel.

The chasing may last one to two hours.

To address the issue of piracy attacks, the Maritime Safety Committee of IMO made

a series of recommendations to ocean carriers in the Best Management Practices ([3]).

According to BMP, carriers should consider preventive actions such as avoiding certain high

risk area, joining group transit schemes with military or independent convey, strengthening

ship protection measures such as making the ship hard to be climbed, and so on. In practice,

however, preventive actions cannot completely eliminate the risk of being attacked when a

commercial vessel is sailing on the sea. If finding a pirate skiff approaching in real time, a

commercial vessel can only run away, as suggested in BMP:

“one of the most effective ways to defeat a pirate attack is by using speed to try to

outrun the attackers and/or make it difficult to board” and “try to steer a straight course

to maintain a maximum speed.”

Intuitively, running away at the maximum speed seems to be a straightforward action to

take, so the problem is rather simple. However, there are indeed other factors to consider.

For example, the direction towards which the vessel sails. Note that each vessel has a

planned route to its destination. It would be the ideal case if the vessel can evade the

chasing by speeding along the planned route, a policy referred to as direct heading hereafter.

Unfortunately, direct heading is not always safe or feasible, which depends on the positions

of the pirate skiffs. Therefore, the vessel needs to consider turning its sailing direction (alter

course), making the vessel deviate from the planned route. The most conservative choice

is changing to the direction exactly opposite to the chasing skiff, but that may deviate

significantly from the planned route. After hours of evading at the maximum speed, the

vessel may end up at a safe place dozens of nautical miles away from the planned route,

which will cost the vessel additional fuel to return to the planned route. In fact it may not

be necessary for the vessel to take such a conservative action. There should be a direction

that makes the vessel safe and at the same time keeps the vessel close to the planned route

as much as possible.

6
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In this paper, we aim to study such an evading problem for a commercial vessel that

is being chased by pirate skiffs. The purpose is to design a cost-effective and safe strat-

egy by optimizing the steering direction of the vessel. We highlight our main results and

contribution as follows.

We formally formulate the problem by identifying the key factors in the chasing process.

We first present a dynamic differential game model with a pirate skiff as pursuer and the

commercial vessel as evader. Assuming that the pirate skiff takes a greedy policy: the pure

pursuit guidance law, we then transform the game into an optimal control problem for the

vessel.

To solve the problem, we focus on three practical policies for the vessel, direct heading,

making one turn, and making two turns. Note that such policies are consistent with the

BMP recommendation because making too many turns will reduce the speed of the vessel.

For each policy, we are able to derive a few structural properties, and develop algorithms

to efficiently compute the optimal decisions.

We conduct extensive simulation to validate our policies. The results show that our

policies can lead to safe and cost-effective decisions for the commercial vessels. Our model

can generate a set of Pareto-optimal solutions, making it possible for the vessel to evaluate

and make decisions in different scenarios.

The rest of the paper is organized as follows. In Section 2.2, we review the related

literature. In Section 2.3, we introduce our model and problem formulation. Then in

Sections 2.4 and 2.5, we study different policies when there is a single chasing skiff. We

conclude the paper in Section 2.6.

2.2 Literature Review

Fighting the piracy attack is an old problem that has been discussed in different areas. For

example, [4] and [5] study the activities of Somali piracy, [6] and [7] address the impact of

piracy on the global economy as well as the transportation cost. More detailed literature

review on maritime safety and security can be found in [8]. The work on quantitative

operations models of the battle with piracy now attracts more attentions, but the result is

7
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still scarce. [9] uses simulation to evaluate the risk level of a specific water area, [10] uses

simulation to compare a variety of prevention operations, and [11] studies how to improve

the group transit schemes. All such works belong to proactive actions which are important

to take in advance. However, proactive actions also means a huge cost to the supply chain.

Our work is different in that we focus on reactive actions to be taken in real time.

From a boarder point of review, the pirate chasing problem that we study here belongs to

the general pursuit-evasion problem that has been studied in other situations, especially in

military applications such as the cruise missile attack. The related research can be classified

into three categories: the pursuit problem, the evasion problem and more general pursuit-

evasion game. In what follows, we give an overview of such problems. We will explain the

uniqueness of our problem in the next section after we present the details of our problem.

The pursuit problem studies the pursuer’s strategies to chase or intercept a moving

target. We now present three fundamental guidance strategies, which is applicable for

planar motion control, see [12], namely line of sight (LOS) law, pure pursuit (PP) law and

proportional navigation (PN) law. These guidance strategies are referred to as the classical

guidance laws. The principle of LOS guidance law, e.g. [13], is to guide the pursuer on a

LOS course of a ground station and the evader. Under pure pursuit law, e.g., [13] and [14],

the pursuer always aligns its velocity along the LOS angle between the evader and itself.

If the pursuer has a higher speed than the evader, it is guaranteed that an intercept will

occur if the chasing time is long enough. However, the miss-distance performance is not

satisfactory, which is because the pure pursuit guidance law requires high latax towards the

end of the engagement. Under the proportional navigation, e.g., [13], [15], [16] and [17], the

pursuer just selects the rotation rate of its velocity directly proportional to the rotation of

rate of the LOS angle between the pursuer and the evader. The proportional navigation law

has a better performance than the pure pursuit law on the miss-distance. However, PN law

does not perform well against the maneuvering evader, see [18] and [19]. It is because that

it doesn’t consider the acceleration of the evader, especially when the evader has a higher

speed.

Modern guidance laws mainly based upon the optimal control theory, including the

8
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improved PN laws, predictive guidance and even the differential games. However, it is quit

computationally intensive to implement these guidance laws. As the first step to study

the pirate-chasing problem, we assume that the pirate adopts the pure pursuit law in this

paper. We will given justification for this assumption when we formally define the problem.

The evasion problem, on the other hand, focuses on the evader’s strategies to get rid

of the chasing, e.g., [20], [21], [15] and [22]. In all these works, the strategy of the pursuer

is predefined and the goal of the evader is to find the safest strategy by maximizing the

capturing time or to find a cost-effective strategy by minimizing the fuel cost. The pursuit-

evasion game studies the problem by simultaneously considering the pursuer’s and the

evader’s strategies, e.g., [23], [24] and [25], [26], and [27] .

Generally the pursuit problem to induce modern guidance laws, the evasion problem

and the pursuit-evasion problem are formulated as optimal control problem. There are

two approaches in the literature, direct method and indirect method. With the direct

method, the optimal control problem is reformulated into a nonlinear programming by the

discretization method, and then solved with nonlinear programming techniques directly,

e.g., [21], [24] and [25]. The indirect method focuses on identifying the optimality conditions

first, e.g., [15] and [22]. In this paper, we follow the indirect method where we can obtain

not only some algorithms to solve the problem, but also the certain general guidance that

will be revealed by the optimality conditions.

2.3 Problem Formulation

We consider a pirate chasing situation, where a commercial vessel finds itself being chased

by a pirate skiff at time zero. Consequently, the commercial vessel needs to decide its sailing

policy, including its sailing direction and speed such that it can escape from the chasing;

at the same time, the pirate skiff wants to catch the commercial vessel as early as possible.

Hereafter we will use the vessel to refer to the commercial vessel, and the pirate to refer to

the pirate skiff.

We can use a Cartesian coordinate system to describe the problem. As depicted in

Figure 2.1, the initial position of the vessel is at the origin (0, 0), and the initial sailing

9
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direction is towards the x-axis. Without loss of generality, assume that the initial position

(x0, y0) of the pirate skiff is below or on the x-axis, i.e., y0 ≤ 0. At any time t, let

(xv(t), yv(t)) and (xp(t), yp(t)) denote the positions of the vessel and the pirate, respectively.

Let vv(t) denote the vessel’s speed and α(t), an angle formed with the x-axis, denote its

direction. Similarly, let vp(t) and β(t) denote the sailing speed and direction of the pirate,

respectively.

X

Y

vessel

pirate (𝑥0, 𝑦0)

𝑣𝑣(0)

𝛽

𝛼

𝑣𝑣

O

Figure 2.1: The initial situation

The dynamic process of the system can be described by the following kinematic equa-

tions, 

dxv(t)

dt
= vv(t) cosα(t),

dyv(t)

dt
= vv(t) sinα(t),

dxp(t)

dt
= vp(t) cosβ(t),

dyp(t)

dt
= vp(t) sinβ(t),

(2.1)

10
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with the initial condition 
(xv(t), yv(t))|t=0 = (0, 0),

(xp(t), yp(t))|t=0 = (x0, y0).

The above equations define a general pursuit-evasion game where both the vessel and

the pirate have to determine their policies. In our problem, one key concern is the distance

between them. Let

r(t) =
√

(xv(t)− xp(t))2 + (yv(t)− yp(t))2 (2.2)

denote their distance at time t, and r0 =
√
x2

0 + y2
0 denote the initial distance. The following

assumptions streamline the definition of our problem.

Assumption 1. The vessel is safe if and only if r(t) ≥ R for t ∈ [0, T ], where R and T

are given positive constants.

The first constant R indicates a minimum safety distance. For example, R can be set at

the longest distance at which the pirate may start to open fire. As long as the vessel keeps

away from the pirate at a distance no less than R, the vessel can be assumed to be safe. To

avoid the trivial case, we assume r0 ≥ R. The second constant T denotes the arriving time

of the rescue or the maximum time before which the pirate gives up chasing the vessel due

to the limited fuel on the skiff. For example, it is reported that the pirates will chase for

up to 2 hours in many cases.

We first consider how the pirate may determine β(t), the sailing direction of the skiff.

We assume that the pirate will always dash directly towards the vessel, which is known as

the pure pursuit guidance law. Specifically, at any time t, we use θ(t) to denote the angle of

the pirate’s LOS towards the vessel with respect to the x-axis, as shown in Figure 2.2. Then

the pirate will set the sailing direction β(t) at θ(t). Note that, by definition, for r(t) > 0

we have

cos θ(t) =
xv(t)− xp(t)

r(t)
, and sin θ(t) =

yv(t)− yp(t)
r(t)

. (2.3)

11
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X

Y

vessel

(𝑥0, 𝑦0)

O

𝛽 𝑡 = 𝜃(𝑡)

𝑣𝑝(𝑡)

𝑣𝑣(𝑡)

𝛼(𝑡)

Trajectory of vessel

Trajectory of pirate

pirate

Figure 2.2: Dynamic process under the pure pursuit guidance law

Assumption 2. The pirate will take the pure pursuit guidance law in which β(t) = θ(t)

for t ∈ [0, T ].

Assuming that the pirate wants to catch the vessel as early as possible, then we can

partially justify the pure pursuit guidance law by the following lemma. The lemma implies

that taking the pure pursuit guidance law is a locally optimal policy for the pirate because

it leads to the steepest descent of r(t) at any time t. Note that Eq.(2.3) is given under

the condition r(t) > 0, which is the meaningful case for our problem. In what follows, our

analysis is also applied to the case of r(t) > 0 unless otherwise specified, though we will

denote the time range as t ∈ [0, T ]. For simplicity, we will not state the condition r(t) > 0

again.

Lemma 2.1. At any time t,
dr(t)

dt
is minimized by β(t) = θ(t).

Next, we consider the speed decisions of both the pirate and the vessel.

Assumption 3. The speeds of both the vessel and the pirate are constant, i.e., vv(t) ≡ vv,

vp(t) ≡ vp, for t ∈ [0, T ].

12
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This assumption is consistent with some practical evidence. In particular, BMP suggests

that a vessel steers a straight course to maintain a maximum speed. At the same time, the

pirate also has a reasonable incentive to use the maximum speed in order to catch the

vessel as soon as possible, for example, before any rescue team arrives. Thus we consider

the common case where both the pirate and vessel take their respective maximum speed.

Actually our analysis can also be used for the vessel to evaluate the option of taking a slower

speed as long as the speed does not vary over time.

For notional convenience, let γ =
vp
vv

denote the ratio of speeds between the pirate and

the vessel. Note that γ > 1 means that the pirate has a higher speed over the vessel, the

more often case resulting in a successful hijack. When γ = 1, i.e., the pirate and vessel have

the same speed, we then use v to denote the speed.

Given the above assumptions, we can simplify the system formulation (2.1) by replacing

vv(t) by vv, vp(t) by vp, and β(t) by θ(t). In addition, for the position of the pirate, we use

r(t) and θ(t) to characterize its relative position to the vessel, thus eliminating the notion

of xp(t) and yp(t). Now consider the dynamic process of θ(t). Differentiating on both sides

of (2.3), we have

− sin θ(t)
dθ(t)

dt
=

dxv(t)
dt −

dxp(t)
dt

r(t)
−

(xv(t)− xp(t))dr(t)
dt

r2(t)
.

Substituting (2.1) and (2.3) to the above equation, we have

− sin θ(t)
dθ(t)

dt
=

vv cosα(t)− vp cos θ(t)− (vv cos(α(t)− θ(t))− vp) cos θ(t)

r(t)

= −vv sin(α(t)− θ(t)) sin θ(t)

r(t)
,

and thus

dθ(t)

dt
=
vv sin(α(t)− θ(t))

r(t)
. (2.4)

Based on the above results, the system can be reformulated as follows,

dxv(t)

dt
= vv cosα(t),

dyv(t)

dt
= vv sinα(t),

dr(t)

dt
= vv(cos(α(t)− θ(t))− γ),

dθ(t)

dt
= vv

sin(α(t)−θ(t))
r(t) ,

(2.5)
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with the safety constraint:

r(t) ≥ R , for t ∈ [0, T ]. (2.6)

In the new formulation, the only decision is α(t), the sailing direction of the vessel. The

problem becomes an optimal control problem where a feasible control policy α(t), t ∈ [0, T ]

is needed to optimize some objective function.

While any policy α(t) satisfying (2.5) and (2.6) is feasible, the vessel may choose one

that is also cost-effective. For example, the vessel may simply choose α(t) = θ(t), sailing

just opposite to the pirate, but that may lead the vessel to a position very far away from the

original route, and after the chasing, the vessel needs to sail additional voyage to return. A

more reasonable policy for the vessel should be ending up at the position close to the original

route. To this end, we consider the end position (xv(T ), yv(T )), where xv(T ) measures the

movement along the original direction, and yv(T ) gives the deviated distance. In general,

we hope x(T ) to be as large as possible, and yv(T ) to be close to zero as much as possible.

Definition 2.1. For any two feasible policies α(t) and α′(t) on t ∈ [0, T ], we say α(t)

dominates α′(t) if and only if one of the following two statements is true:

1) xv(T ) > x′v(T ) for the case of x′v(T ) < 0, or

2) xv(T ) ≥ x′v(T ) and |yv(T )| ≤ |y′v(T )| for the case of x′v(T ) ≥ 0, and at least one

inequality is not tight.

The meaning of dominance can be explained as follows. The common condition xv(T ) ≥

x′v(T ) implies that under α(t) the vessel moves longer distance along the planned direction,

which is preferred. For the case x′v(T ) > 0, we may also prefer a smaller deviation from

the planned direction, so we add another condition on yv(T ). For the case x′v(T ) < 0, it

is reasonable to give priority to shorter backward sailing, so the condition on yv(T ) is not

added. By definition, a vessel does not need to consider a policy α′(t) if it is dominated by

another policy α(t).

Definition 2.2. A control policy α(t), t ∈ [0, T ], is Pareto-optimal if and only if α(t),

t ∈ [0, T ], is not dominated by any other control policy. If all Pareto-optimal controls have

the same end position (xv(T ), yv(T )), then they are global optimal.
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Any Pareto-optimal policy has certain advantage against another one, with respect to

either sailing a longer distance along the x-axis or having a smaller deviation along the

y-axis. In this paper, our goal is to characterize the frontier of the set of the Pareto-optimal

policies. This enables the vessel master to understand and evaluate all possible choices for

making a decision.

2.4 Direct Heading

Direct heading refers to the policy under which the vessel keeps the original sailing direction,

i.e. α(t) ≡ 0 for t ∈ [0, T ], leading to (xv(T ), yv(T )) = (vvT, 0). This means that direct

heading will be the unique global optimal policy if it satisfies (2.5) and (2.6) because xv(T )

achieves its maximum value and |yv(T )| = 0 is at its minimum value. So the issue related

to direct heading is testing its feasibility, which is determined by the initial position of the

pirate (r0, θ0).

2.4.1 Feasibility Test for Direct Heading

The feasibility test is to check if r(t) ≥ R for t ∈ [0, T ]. We first discuss two special cases

with respect to θ0, θ0 = 0 and θ0 = π. For the case of θ0 = 0, i.e., the pirate appears directly

behind the vessel, the pirate will also keep its direction as θ(t) = 0, so direct heading is

feasible as long as γ ≤ 1, or γ > 1 but (vp − vv)T ≤ r0 − R. For the case of θ0 = π,

i.e., the pirate appears directly in front of the vessel, direct heading means that the vessel

sails directly towards to the pirate, which is not a reasonable choice at all. In the following

analysis, we will exclude these two special cases and assume θ0 ∈ (0, π), i.e., the pirate does

not appear exactly on the vessel’s sailing direction.

To facilitate the discussion, we first introduce a definition.

Definition 2.3. The capture time, denoted by Tc, is the earliest time when the distance r(t)

between the vessel and the pirate decreases to R, i.e., r(t) > R for t ∈ [0, Tc) and r(Tc) = R.

Note that Tc may or may not exist. If Tc does not exist, the vessel will always be safe

regardless of the chasing time limit T . If Tc exists and Tc > T , the vessel is still safe before
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T . So the feasibility test can be done by checking the existence of Tc and calculating its

value if existing.

Under the direct heading policy where α(t) ≡ 0, the processes of r(t) and θ(t), before

r(t) = 0, can be simplified into

dr(t)

dt
= vv(cos θ(t)− γ), (2.7)

dθ(t)

dt
= −vv

sin θ(t)

r(t)
. (2.8)

An analytical solution of r(t) on θ(t) can be found in [13]. Specially, when θ(t) is known

to be in (0, π), the solution is given as

r(t) = C0
tanγ θ(t)

2

sin θ(t)
, (2.9)

and θ(t) satisfies

− 1

2(1 + cos θ(t))
+

1

4
ln
(1 + cos θ(t)

1− cos θ(t)

)
=

v

C0
t+ C1, if γ = 1, (2.10)

1

2(γ − 1)
tanγ−1 θ(t)

2
+

1

2(γ + 1)
tanγ+1 θ(t)

2
= − vv

C0
t+ C2, if γ 6= 1, (2.11)

where C0 =
r0 sin θ0

tanγ θ0
2

, C1 = − 1

2(1 + cos θ0)
+

1

4
ln(

1 + cos θ0

1− cos θ0
), and C2 =

1

2(γ − 1)
tanγ−1 θ0

2 +

1

2(γ + 1)
tanγ+1 θ0

2 are three parameters depending on the initial position of the pirate

(r0, θ0) and the speed ratio of the two objects γ.

To make the solution (2.9)-(2.11) valid to our problem, we need to guarantee θ(t) ∈ (0, π)

for t ∈ [0, Tc). From (2.8), we can see that θ(t) is non-increasing on t for θ(t) ∈ [0, π] because

dθ(t)

dt
≤ 0. This means that, under the initial condition θ0 ∈ (0, π), θ(t) is strictly decreasing

until possibly at a certain time t = τ , we have θ(τ) = 0, and then θ(t) = 0 for t > τ . The

next lemma discusses the existence of such a τ .

Lemma 2.2. If γ > 1, there exists a time τ such that θ(τ) = 0, θ(t) is strictly decreasing on

t and θ(t) > 0 for t ∈ [0, τ), and furthermore, we have r(t) > 0 for t ∈ [0, τ) and r(τ) = 0.

If γ ≤ 1, such a time τ does not exist, i.e., θ(t) > 0 for all t ∈ [0,+∞).

Lemma 2.2 implies that the solution given in (2.9)-(2.11) fully characterizes the process

that we are interested in. Based on that, we can do the feasibility test by checking the
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existence of the capture time Tc. By definition, if Tc exists, it should satisfy r(Tc) = R

together with (2.10) for the case of γ = 1, and satisfy r(Tc) = R together with (2.11) for

the case of γ 6= 1.

We first consider the case of γ = 1, i.e., the pirate and the vessel have the same speed. In

this case, an analytical solution is available. It gives the necessary and sufficient condition

for the direct heading policy to be safe to the vessel.

Proposition 2.1. When γ = 1, if r0(1 + cos θ0) ≥ 2R, the capture time Tc does not exist,

and if r0(1 + cos θ0) < 2R,

Tc =
r0 −R

2vv
+
r0(1 + cos θ0)

4vv
ln

r0(1− cos θ0)

2R− r0(1 + cos θ0)
.

Next, we consider the case of γ 6= 1. In this case we cannot obtain a closed-form solution

for the capture time Tc. So we need to computationally find Tc, which is the solution of the

following nonlinear equations of t.

C0
tanγ θ(t)

2

sin θ(t)
= R

1

2(γ − 1)
tanγ−1 θ(t)

2
+

1

2(γ + 1)
tanγ+1 θ(t)

2
= − vv

C0
t+ C2

(2.12)

Before presenting our algorithm to solve (2.12), we first discuss the existence, uniqueness,

and possible range of the solution. First, the case is simple if the pirate skiff has a higher

speed, i.e., γ > 1. The next proposition gives a finite upper bound of Tc.

Proposition 2.2. When γ > 1, (2.12) has a unique solution Tc where Tc ∈ (0, r0(γ+cos θ0)
vv(γ2−1)

).

The proof of Proposition 2.2 relies on a key fact that the distance function r(t) is

decreasing on t until r(t) = 0. When γ < 1, i.e., the pirate has a lower speed, the distance

function r(t) may not be monotone on t. It may be decreasing first, then become increasing.

So the situation is more complicated. To characterize the shape of r(t), we define three

critical parameters that can be calculated directly for any given r0, θ0, and γ.

θ̄(γ) , arccos γ, where θ̄(γ) ∈ (0, π/2),

r̄(γ) = C0
tanγ θ̄(γ)

2

sin θ̄(γ)
,

t̄(γ) =
r0(γ + cos θ0)− 2γr̄(γ)

vv(γ2 − 1)
.
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The first parameter θ̄(γ) gives a threshold value on θ0 for the existence of Tc. Specifically,

when θ0 ≤ θ̄(γ), Tc does not exist for any r0 > R. The second parameter r̄(γ) is the

minimum value of the distance function r(t), giving a sufficient and necessary condition for

the existence of Tc when θ0 > θ̄(γ). The third parameter t̄(γ) is an upper bound of Tc when

Tc does exist. In fact, r(t̄(γ)) = r̄(γ). These are formally given in the following proposition.

Proposition 2.3. When γ < 1,

1) r̄(γ) is the global minimum value of r(t),

2) if θ0 ≤ θ̄(γ), or θ0 > θ̄(γ) but r̄(γ) > R, Tc does not exist, and

3) if θ0 ≤ θ̄(γ) and r̄(γ) ≤ R, Tc exists in (0, t̄(γ)].

From Propositions 2.2 and 2.3, we know that, when γ > 1, Tc is the unique solution to

(2.12) within the interval t ∈ (0, r0(γ+cos θ0)
γ2−1

), and when γ < 1, Tc is the unique solution to

(2.12) within the interval t ∈ (0, t̄(γ)].

Directly solving (2.12) is hard; even with a given t, there is no closed-form equation to

calculate r(t). However, we notice that, for a given θ(t), it is easy to calculate both r(t) and

t. Because of the one-to-one mapping between t and θ(t) within the concerned intervals,

in particular, t ∈ (0, r0(γ+cos θ0)
γ2−1

) corresponding to θ(t) ∈ (0, θ0) for the case γ > 1, and

t ∈ (0, t̄(γ)] corresponding to θ(t) ∈ [θγ , θ0) for the case γ < 1 and Tc exits, we can solve

(2.12) by the following algorithm.

Algorithm 1.

Step 1. Solve C0
tanγ

θ(t)
2

sin θ(t) = R with respect to θ(t), for θ(t) ∈ (0, θ0) when γ > 1, and for

θ(t) ∈ [θ̄(γ), θ0) when γ < 1. Let the solution be θ.

Step 2. Given the solution θ found in Step 1, calculate t from (2.11) with θ(t) = θ.

Then Tc = t.

Step 1 is to solve a standard unconstrained nonlinear problem, which can be done either

by a bisection search or Newton’s method. Converging to the unique solution is guaranteed

by Propositions 2.2 and 2.3.

18



www.manaraa.com

2.4.2 Infeasible Region

Given any initial position of the pirate, (r0, θ0), we are able to use Propositions 2.1 to 2.3 to

check the feasibility of direct heading. Based on that, we can further characterize the entire

set of initial positions under which directing heading is infeasible, where we refer the set as

Infeasible Region. It is helpful to construct the Infeasible Region in advance. For example,

the vessel should strengthen the surveillance over the Infeasible Region. In addition, when

a pirate skiff is found with an uncertain speed, the vessel can evaluate a number of scenarios

by checking the Infeasible Regions with different parameters, which enables the vessel to

make a decision in real time.

We first study how the Infeasible Region depends on the initial position (r0, θ0). To

this end, we slightly modify the notation r(t) to r(t, r0, θ0), and r̄(γ) to r̄(γ, r0, θ0), in order

to explicitly show its dependence on (r0, θ0). From the previous analysis, we know that

the Infeasible Region is given by {(r0, θ0) : r(T, r0, θ0) < R} when γ ≥ 1, and given by

{(r0, θ0) : r(T, r0, θ0) < R if T < t̄(γ), and r̄(γ, r0, θ0) < R if T ≥ t̄(γ)) when γ < 1.

Proposition 2.4. For any given chasing time T and speed ratio γ, if direct heading policy

is feasible when the initial position of the pirate is (r0, θ0), then it is feasible for the position

being (r, θ0) where r ≥ r0 and (r0, θ) where θ ≤ θ0.

Proposition 2.4 shows that when the pirate is relatively behind the vessel’s sailing direc-

tion with the same distance r0 or is far away from the vessel along the same direction θ0, the

vessel is more likely to be safe by simply sailing directly. This proposition also implies that

the Infeasible Region is a compact set with respect to the initial position (r0, θ0). Thus,

to construct the Infeasible Region, it is equivalent to find the border of the region. All

positions insider the border will lead direct heading policy to infeasible while the positions

outside will guarantee the safety of the commercial vessel.

To find the border efficiently, we propose the algorithms as follows. The following

bisection method is to find the unique relative distance r0 such that C0
tanγ

θ(T )
2

sin θ(T ) = R for

given θ0.

Algorithm 2.
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• Initialization: θ(T )u = θ0, θ(T )l = 0;

• If θ0 ≤ θ̄(γ), r0 = R. Otherwise, solve equation (2.10) when γ = 1 and equation (2.11)

when γ 6= 1 to obtain r0 for given θ(T ) = θ(T )l+θ(T )u
2 ;

• Calculate r(T ) by equation (2.9) if θ(T ) > θ̄(γ) and r̄(γ) by if θ(T ) ≤ θ̄(γ). Update

the range of θ(T ) as

θ(T )u = θ(T ) if θ(T ) ≤ θ̄(γ) & r(T ) > R

θ(T )l = θ(T ) if θ(T ) ≤ θ̄(γ) & r(T ) < R

θ(T )u = θ(T ) if θ(T ) > θ̄(γ) & r(T ) > R

θ(T )l = θ(T ) if θ(T ) > θ̄(γ) & r(T ) < R

• Repeat the process until r(T ) = R.

We now illustrate some Infeasible Regions for additional insights. We first show how

Infeasible Regions may change with the speeds in Figures 2.3 and 2.4, where the safety

distance R = 0.5 nmi and the chasing time T = 2 hours. Figures 2.3 is for the case when

the speed of the pirate varies with the vessel speed vv fixed at 20 knots, and Figure 2.4 is

for the case when the vessel speed varies with the pirate speed vp fixed at 20 knots. Both

figures show that the Infeasible Region expands quickly when the pirate speed increases.

This underscores the importance of maintaining a high speed of the vessel, consistent with

the BMP guidance.

The range of Infeasible Regions also depends on the value of R, the safety distance.

Typically it is should be no less than the effective range of the weapons that the pirate may

have, for example, a few hundred meters for a rifle, and up to two thousand meters for a

machine gun. The choice can be made by the vessel based on the experience and available

information, such as previously reported cases of pirate attacks in the nearby area. In

Figures 2.5 and 2.6, we give the Infeasible Regions under different R values for two cases,

respectively, when the pirate has a higher speed and when the vessel has a higher speed.

In Figures 2.7 and 2.8, we give the Infeasible Regions under different chasing time T

for two cases, respectively, when the pirate has a higher speed and when the vessel has a
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Figure 2.4: Infeasible Regions under fixed vp

higher speed. The difference between Infeasible Regions when R varies is relatively slight.

And the difference when T changes is large. Therefore, an accurate estimate of the chasing

time is of huge significance to decide a feasible policy.

2.5 Policies with One or Two turns

Although direct heading is an optimal policy if it is feasible, the reality is that it is often

infeasible when the pirate skiff is not found early enough. The previous numerical examples

show that the Infeasible Region of the direct heading policy is quite large, especially when
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the pirate has a higher speed than the vessel. Therefore, the vessel has to change its sailing

direction, i.e., to make one or even several turns.

A policy with k turns can be defined as follows. Given a maximum chasing time T ,

we introduce k decision points 0 = t1 < t2 < · · · tk < T . Also denote tk+1 = T . At each

decision point ti, for i = 1, 2, . . . , k, we decide a sailing direction, αi, for the vessel during

time interval [ti, ti+1]. The goal is to find a set of Pareto-optimal controls characterized by

the turn time points (t1, t2, . . . , tk) and the corresponding (α1, α2, . . . , αk).

Theoretically speaking, the vessel can make turns at any time. However, making too

many turns is not practical because the vessel may sacrifice certain time and speed to make

a turn. So it is reasonable for the vessel to consider making turns as few as possible. In fact,

BMP suggests a vessel “try to steer a straight course”. In what follows, we will investigate

two cases in detail, making one turn (Figure 2.9) and making two turns (Figure 2.10). The

case of making more turns can be analyzed in a similar approach as making two turns.

X

Y

(𝑥0, 𝑦0)

O

𝜃(𝑡)

𝑣𝑝(𝑡)

𝑣𝑣(𝑡)

𝛼 𝑡 ≡ 𝛼ot

Trajectory of vessel

Trajectory of pirate

pirate

Figure 2.9: Dynamic process in one-turn policy
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Figure 2.10: Dynamic process in two-turn policy

2.5.1 One-turn Policy

Under the one-turn policy, the vessel will turn its sailing direction to a specific α immediately

after it finds being chased, and stays at this direction until T . We will refer to it as policy-α.

There is another option of making only one turn where the vessel keeps the current sailing

direction until time t, then turns to a new direction α and maintains the direction until

time T . We will treat this option as a special case of the two-turn policy (α1, α2) where

α1 = 0 and α2 = α and discuss more about this policy later.

Similar to the case of studying direct heading, we assume that the pirate is below or on

the x-axis defined in Figure 2.1. In fact, any policy-α can be regarded as direct heading

if we rotate the coordinate system anticlockwise by a degree of α. Such a view enables us

to directly check the feasibility of the one-turn policy for any given α. We note that the

range of α can be pretty large. However, we can only consider α ∈ [0, θ0]. Because of the

symmetry, for any α ∈ [0, θ0], policy-α and policy-(2θ0 − α) will result in the same r(t)

during [0, T ]. Figure 2.11 shows this symmetry of the processes under policy-α and policy-

(2θ0 − α).
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Figure 2.11: Symmetry of policy-α and policy-(2θ0 − α)

Furthermore, for any α ∈ (0, θ0], we can also see that policy- α will dominate policy-

(2θ0 − α) because, when θ0 ∈ [0, π) as we have assumed, the policy-α always makes the

vessel sailing a longer distance along the original direction. Therefore, we only need to focus

on the range where α ∈ (0, θ0]. From Lemma 2.2, the pirate will stay below the rotated

x-axis, which means θ(t) > α, before their distance becomes zero.

Feasibility test of a policy-α can be done as follows. We use r(t, α) to denote the

distance between the vessel and the pirate at time t, under the one-turn policy-α. From

the above analysis, we know that the system status can be characterized by a modification

to (2.9)-(2.11), where θ(t) is replaced by θ(t)− α. Hence we have

r(t, α) = C0(α)
tanγ θ(t)−α

2

sin(θ(t)− α)
(2.13)

with θ(t) satisfying

− 1

2(1 + cos(θ(t)− α))
+

1

4
ln
(1 + cos(θ(t)− α)

1− cos(θ(t)− α)

)
=

v

C0(α)
t+ C1(α), if γ = 1, (2.14)

1

2(γ − 1)
tanγ−1 θ(t)− α

2
+

1

2(γ + 1)
tanγ+1 (θ(t)− α)

2
= − vv

C0(α)
t+C2(α), if γ 6= 1, (2.15)
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where C0(α) =
r0 sin(θ0 − α)

tanγ (θ0−α)
2

, C1(α) = − 1

2(1 + cos(θ0 − α))
+

1

4
ln(

1 + cos(θ0 − α)

1− cos(θ0 − α)
), and

C2(α) =
1

2(γ − 1)
tanγ−1 (θ0 − α)

2
+

1

2(γ + 1)
tanγ+1 (θ0 − α)

2
.

From (2.13)-(2.15), we can slightly modify Algorithm 1 to check the feasibility of any

one-turn policy-α. The details are omitted. We now discuss the existence of a unique

optimal policy-α.

Consider any two feasible policies: policy-α and policy-α′ where 0 ≤ α < α′ ≤ θ0. The

final positions of the vessel under the two policies are (x(T ), y(T )) = (vvT cosα, vvT sinα)

and (x′(T ), y′(T )) = (vvT cosα′, vvT sinα′), respectively. When α′ ≤ π/2, we always have

x(T ) > x′(T ) ≥ 0 and y′(T ) > y(T ) ≥ 0. When α′ > π/2, x′(T ) < 0. And x(T ) > x′(T )

whenever α > π/2 or α ≤ π/2. According to Definition 2.1, α will dominate α′. It implies

that there exists a unique optimal one-turn policy-α∗ that dominates all other one-turn

policies; specifically, α∗ is the smallest among all feasible α’s. The next lemma enables us

to find the optimal α∗.

Lemma 2.3. Consider two one-turn policies α and α′ with 0 ≤ α < α′ < θ0. At any time

t before r(t, α) = 0, we have r(t, α) < r(t, α′).

This lemma shows that if a policy-α is feasible, then any policy-α′, α′ ∈ [α, θ0] is feasible.

Hence, the optimal policy-α∗ partitions the entire set [0, θ0] into the feasible set [α∗, θ0] and

infeasible set [0, α∗). Therefore, α∗ can be found by a bisection search in [0, θ0] as follows.

Algorithm 3.

• Initialization: αu = θ0, αl = 0. α = αl+αu
2 ;

• Repeat the following steps until α− αl < ε. Let θnew = θ0 − αk. Use Algorithm 1 to

find the capture time Tc of direct heading policy given (r0, θnew). Update αl and αu,
αu = α, if Tc > T ;

αl = α, if Tc < T.
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2.5.2 Two-Turn Policy

In a two-turn policy, the whole period [0, T ] is divided into two intervals [0, τ ] and [τ, T ],

and the vessel has two sailing directions α1 and α2, as shown in Figure 2.10, such that

α(t) =


α1, if 0 ≤ t ≤ τ

α2, if τ < t ≤ T.
(2.16)

Note that τ , α1, and α2 are all decision variables.

Given a two-turn policy (τ, α1, α2), we can regard it as two connected one-turn policies.

Similarly to the one-turn policy, we can conclude α(t) ≤ θ(t) for t ∈ [0, T ] due to the

symmetric property of the process. Hence, we only need to consider the region where

α1 ∈ [θ0 − π, θ0] in the first stage and α2 ∈ [θ(τ)− π, θ(τ)] in the second stage.

The final state under a two-turn policy , taking γ 6= 1 as example, satisfies the following

nonlinear equations.
r(τ) = C10

tanγ θ(τ)−α1

2

sin(θ(τ)− α1)

1

2(γ − 1)
tanγ−1 θ(τ)− α1

2
+

1

2(γ + 1)
tanγ+1 θ(τ)− α1

2
= − vv

C10
τ + C12,

(2.17)


r(T ) = C20

tanγ θ(T )−α2

2

sin(θ(T )− α2)

1

2(γ − 1)
tanγ−1 θ(T )− α2

2
+

1

2(γ + 1)
tanγ+1 θ(T )− α2

2
= − vv

C20
(T − τ) + C22,

(2.18)

where

C10 = r0
sin(θ0 − α1)

tanγ θ0−α1
2

, C12 =
1

2(γ − 1)
tanγ−1 θ0 − α1

2
+

1

2(γ + 1)
tanγ+1 θ0 − α1

2
,

C20 = r(τ)
sin(θ(τ)− α2)

tanγ θ(τ)−α2

2

, C22 =
1

2(γ − 1)
tanγ−1 θ(τ)− α2

2
+

1

2(γ + 1)
tanγ+1 θ(τ)− α2

2
.

We need to point out that one prior condition for any feasible two-turn policy to exist

is the existence of feasible one-turn policies because one-turn policies include the safest and

most conservative policy α = θ0. However, sometimes even the optimal one-turn policy
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deviates from the planned route too much. Hence we hope to find two-turn policies that

dominate the optimal one-turn policy.

Suppose that the optimal one-turn policy α∗ has been found. Recall that α∗ is the

smallest feasible turning angle. Then we can eliminate some two-turn policies. First, any

two-turn policy (τ, α1, α2) with α1 < α∗ and α2 < α∗ is infeasible regardless of the turning

time τ . By using Lemma 2.3 twice, we can see that such a two-turn policy will lead to

a shorter distance r(t) at any time t than policy α∗ does. Hence the two-turn policy is

infeasible. Second, for the same reason, any two-turn policy (τ, α1, α2) with α1 > α∗ and

α2 > α∗ is feasible but dominated by one-turn policy-α∗ regardless of the turning time τ .

Based on the above analysis, we need to consider two cases: case one of α1 > α∗ > α2,

and case two of α1 < α∗ < α2.

Lemma 2.4. Assume a two-turn policy (τ, α1, α2) is taken by the vessel. If it holds that

γ − cos(θ(T ; τ, α1, α2)−α2) ≥ 0, then the final relative distance r(T ; τ, α1, α2) is increasing

on τ when α1 > α2, and decreasing on τ when α1 < α2.

The condition γ − cos(θ(T ; τ, α1, α2) − α2) ≥ 0 in Lemma 2.4 implies that the relative

distance r(t) is decreasing on t ∈ [τ, T ]. If γ ≥ 1, r(t) is strictly decreasing on t ∈ [0, T ].

The sufficient condition for a two-turn policy to be feasible is r(T ; τ, α1, α2) ≥ R. And we

are able to induce the interval of feasible turn time based on Lemma 2.4. However, if γ < 1,

the condition will only help to figure out whether the vessel is caught or not during [τ, T ]

by checking r(T ; τ, α1, α2). To analyze whether the two-turn policy is feasible or not, we

still need to study the minimum relative distance during the whole time interval [0, T ]. Let

r̄(γ; τ, α1, α2) denote the minimum relative distance when the two-turn policy (τ, α1, α2) is

taken by the vessel. Then the vessel is safe if and only if r̄(γ; τ, α1, α2) ≥ R. If r̄(γ; τ, α1, α2)

occurs during the time interval (0, τ), r̄(γ; τ, α1, α2) is independent on τ . However, if the

r̄(γ; τ, α1, α2) occurs during [τ, T ), r̄(γ; τ, α1, α2) will depend on τ . The following lemma

shows the relationship between the τ and r̄(γ; τ, α1, α2) if r̄(γ; τ, α1, α2) occurs during [τ, T ).

Lemma 2.5. The minimum relative distance r̄(γ; τ, α1, α2) is increasing on τ when α1 >

α2, and decreasing when α1 < α2.
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With these Lemma 2.4 and Lemma 2.5, we are able to conclude the feasible interval of

the turn time given the turn angles α1 and α2.

Proposition 2.5. For any given α1, α2 and the chasing time T , if a two-turn policy

(τ, α1, α2) is feasible, then any control (τ ′, α1, α2) is feasible if τ ′ > τ on the case of α1 >

α∗ > α2 and τ ′ < τ on the case of α1 < α∗ < α2.

Proposition 2.5 states a threshold value for the turn time for any given α1 and α2. For

the case of α1 > α∗ > α2, the vessel could not change its direction before a time point while

the vessel could not change its direction after a time point for the case of α1 < α∗ < α2. Let

τ∗(α1, α2) denote the threshold value. The feasible interval of turn time is [τ∗(α1, α2), T ]

in case one and [0, τ∗(α1, α2)] is case two.

After inducing the feasible interval of the turn time, we now consider the Pareto-optimal

two-turn policy given α1 and α2. Note that the smallest relative distance will equal to R

only if the turn time is τ∗(α1, α2). We can argue that for given α1 and α2, only the two-turn

policy-(τ∗(α1, α2)) is a potential Pareto-optimal two-turn policy. We take the case of α1 >

α∗ > α2 as an example while similar argument can be applied to the case of α1 < α∗ < α2.

When two-turn policy-(τ, α1, α2) is taken by the vessel, the final position of the vessel would

be x(T ; τ, α1, α2) = vvτ cosα1+vv(T−τ) cosα2, y(T ; τ, α1, α2) = vvτ sinα1+vv(T−τ) sinα2.

If y(T ; τ, α1, α2) < 0 for any α1 and α2, it implies that α2 < 0. Increasing α2 to α′2

such that y(T ; τ, α1, α
′
2) = 0, we can conclude that x(T ; τ, α1, α

′
2) > x(T ; τ, α1, α2), which

means that (τ, α1, α
′
2) dominates (τ, α1, α2). At this time, there will be no Pareto-optimal

two-turn policy given α1 and α2. Otherwise, we have y(T ; τ, α1, α2) > 0. If α2 ≥ −α1,

x(T ; τ, α1, α2) is monotone decreasing on τ while y(T ;α1, α2) is monotone increasing on

τ . Thus, (tau∗, α1, α2) can dominate the two-turn policies with later turn. if α2 < −α1,

(τ∗, α1, α2) can not dominate the two-turn policies with later turn. However, for any two-

turn policy with later turn, we still can find a better two-turn policy, as in Figure 2.12. In

short, only the two-turn policy with earliest turn time may not be dominated by any other

policies. Similarly, we can conclude that only the two-turn policy with latest turn time

(Figure 2.13) may not be dominated by other two-turn policy for the case of α1 < α∗ < α2.
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Figure 2.12: α1 > α∗ > α2, earliest turn
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Figure 2.13: α1 < α∗ < α2, latest turn

According to Proposition 2.5, we are able to find τ∗(α1, α2) with bisection method for

any fixed α1 and α2. The detailed procedure of finding τ∗(α1, α2) for fixed α1 and α2 is:

Algorithm 4.

• Initialization: τl = 0, τu = T ; τk = (τl + τu)/2;

• bisection method to find θ(τk), r(τk) in the first stage and then θ(T ), r(T ) in the

second stage;

• Calculate r̄(γ; τ, α1, α2) if γ < 1, based on θ(τk) and θ(T );
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• update tl and tu as following:

τu = τk, if (τk, α1, α2) is feasible &&α1 > α2,

τu = τk, if (τk, α1, α2) is infeasible &&α1 < α2,

τl = τk, if (τk, α1, α2) is infeasible &&α1 > α2,

τl = τk, if (τk, α1, α2) is feasible &&α1 < α2.

2.5.3 Set of Pareto-Optimal Policies

Given α1 and α2, we can use Algorithm 4 to find the optimal turn time τ∗(α1, α2) and a

two-turn policy (τ∗(α1, α2), α1, α2) that dominates other two-turn policies (τ ′, α1, α2). By

enumerating α1 and α2, we can identify the set of all Pareto-optimal policies computation-

ally, making it possible to the vessel to evaluate alternative policies.

We now use some examples to demonstrate the results. First we will show the vessel’s

final positions (xv(T ), yv(T )) under different policies, which show how two-turn policies may

improve the optimal one-turn policy. In all examples, we set vv = 18 knots, vp = 25 knots,

R = 0.5 nmi, and T = 2 hours.

Figure 2.14 shows the set of final positions (xv(T ), yv(T )) of the vessel when the pirate

is found at (−10,−15) initially, i.e., the pirate behind the vessel. The red line is the trace

of the optimal one-turn policy where α∗ = 0.2324 or 13.3o. The yellow dots are the final

positions under all Pareto-optimal two-turn policies. In this example, we see that there

are indeed some two-turn policies dominating the one-turn policy-α∗ with larger xv(T ) and

smaller yv(T ), which verifies the advantage of two-turn policies. At the same time, we find

that the range of different xv(T ) values is quite narrow compared to the range of different

yv(T ) values. This shows that, in this case, the benefit of the two-turn policies is a higher

chance of minimizing the deviation from the original sailing direction.

Figure 2.15 shows the set of the vessel’s final positions when the pirate is found at

(10,−20) initially, i.e., the pirate is relatively in front of the vessel. The optimal one-turn

policy is α∗ = 0.7879 or 45o. Similar to Figure 2.14, we see the existence of two-turn policies

dominating the optimal one-turn policy. There is a different observation. In Figure 2.15,

the range of xv(T ) values under all Pareto-optimal two-turn policies is now much bigger
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Figure 2.14: An example of two-turn policies with the pirate relatively behind the vessel

than the range of yv(T ) values. In this case, the benefit of the two-turn policies is a higher

chance of sailing a farther distance along the original sailing direction.

To further investigate the two-turn polices, in Figsure 2.16 and 2.17, we give the set of

Pareto-optimal policies, represented by (α1, α2), for the two examples. Recall that we only

need to consider two cases, α1 > α2 and α2 > α1. In the first case the vessel tends to evade

chasing by making a larger turn in the first stage, and then tries to return to the original

direction; and in the second case, the vessel tends to stick on the original direction with a

smaller turn in the first stage and then tries to evade chasing. For these two examples, we can

see that α1 > α2 for all the Pareto-optimal policies, i.e., any two-turn policy with α1 < α2 is

dominated by some other two-turn policy with α1 > α2. In fact, the computational details

reveal an even stronger result. We have observed that r(T ; τ, α1, α2) ≥ r(T ;T − τ, α2, α1)

for any α1 > α2 and any τ . One possible explanation is that making a larger turn in the

first stage will help the vessel maintain a larger the distance from the pirate.

With this observation, we now want to discuss something about the two-turn policy with

α1 = 0 and α2 > α1. This special two-turn policy can be seen as one-turn policy with a turn

time not being 0. With different turn time τ , we can expect that it corresponds to different
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Figure 2.15: An example of two-turn policies with the pirate relatively in front of the vessel
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Figure 2.16: The set of Pareto-optimal policies for the example in Fig. 2.14
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Figure 2.17: The set of Pareto-optimal policies for the example in Fig. 2.15

smallest turn angle α∗2(τ) such that the vessel could evade the chasing. However, there may

not exist a two-turn policy that can dominate all other two-turn policies with α1 = 0 in these

policies. But this observation implies that compared with a two-turn policy-(τ, 0, α∗2(τ)),

(T − τ, α∗2(τ), 0) will be safer. And thus (τ, 0, α∗2(τ)) can not be a Pareto-optimal two-turn

policy.

2.6 Conclusion

Feasibility condition for the vessel to evade the chasing from pirate skiff by taking the direct

heading policy is considered under different speed ratio cases. It does show that the higher

speed will significantly reduce the infeasible region of the pirate skiff’s position in which

the vessel will be caught. In addition, the turn policy is investigated when there exist one

turn and two turns. The one-turn policy is the simplest way for the vessel to take and is

suggested by the BMP while the two-turn policy provides an effective way to arrive at the

preferred position, such as a bigger x(T ) and a smaller | y(T ) |. When evading the chasing

from the pirate, the vessel should first select a large turn angle to guarantee its safety and

then select a smaller turn angle to optimize its final position.
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CHAPTER III

EVADING POLICIES FOR A VESSEL BEING CHASED

BY MULTIPLE SKIFFS

3.1 Introduction

In Chapter 2, we have investigated three evading policies for a commercial vessel to evade

the chasing from one pirate skiff. However, there used to be multiple skiffs, two skiffs in

general as illustrated in [2], approaching from different direction. Assuming that each skiff

takes its own pursuit guidance law, we will discuss how to check the feasibility of the one-

turn and two-turn policies, and how to find the optimal policy. To simplify the presentation,

we only consider the case of two chasing skiffs, but our discussion can be generalized to the

case of more than two skiffs. Specifically, the generalization for the one-turn policy can be

done straightforwardly, and the generalization for the two-turn policy will cause additional

complexity with respect to the number of cases to consider.

Create a Cartesian coordinate system same as in Chapter 2. Let the initial positions

of the skiffs be denoted by (x1, y1) and (x2, y2), or (r1, θ1) and (r2, θ2), respectively. As

indicated by Figures 3.1 and 3.2, there are two cases in terms of the skiffs’ positions. The

two skiffs may be on the two sides of the vessel where we assume y1 ≥ 0 and y2 < 0; they

may be on the same side of the vessel where we assume yi ≤ 0, i = 1, 2. However, we

can rotate the coordinate system to make the two pirate skiffs on the same side on the

commercial vessel when checking the feasibility of the turn policy.

3.2 One-Turn Policy

We first discuss the one-turn policy, including direct heading as a special case. For any

given turning angle α, direct heading policy-α is feasible means that it is feasible to both

skiffs. This can be checked by applying Algorithm 3 twice, each to one pirate.

To find the optimal one-turn policy-α∗ for the vessel, we need to known the set of all
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Figure 3.1: Two pirate skiffs on two sides
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Figure 3.2: Two pirate skiffs on one side
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feasible α values, denoted by A. Clearly, A = A1 ∩ A2, where Ai is the set of α’s feasible

to skiff i. Recall that in the case of having a single chasing skiff, we point out that we

only need to consider searching in [0, θ0] to find the optimal turning angle, because any

α not in [0, θ0], even if feasible, is dominated by another counterpart feasible α′ in [0, θ0].

However, now we have to consider Ai in a larger range because, though α is dominated by

its counterpart α′, α′ may be infeasible to the other chasing skiff. So the need to find the

complete set of feasible α values in [−π, π], which can be done as follows. Without loss of

generality, assume yi < 0.

There are two cases with slight difference in determining Ai, depending on whether

direct heading is feasible to skiff i.

If direct heading is infeasible to skiff i, we have Algorithm 3 to find the optimal one-turn

policy αi. According to the symmetry, Ai = [αi, 2θi − αi]. In case 2θi − αi > π, we rewrite

the feasible set as Ai = [αi, π] ∪ (−π, 2θi − αi − 2π] such that Ai ⊂ [−π, π].

If direct heading is feasible to skiff i, i.e., αi = 0. there exists feasible one-turn policy

α < 0 because r(t, α) is increasing on α. Let ᾱi denote the minimum feasible α. We are

able to find ᾱi by applying Algorithm 3 with the lower bound being θi − π and upper

bound being 0. The set of feasible α is now Ai = [ᾱi, 2θi − ᾱi] when 2θi − ᾱi ≤ π or

Ai = [ᾱi, π] ∪ (−π, 2θi − ᾱi − 2π) when 2θi − ᾱi > π.

In fact, there is another view of the minimum feasible α, which is related to the Infeasible

Region. Let (x′, y′) or (r′, θ′) be the intersection of the cycle
√

(x2 + y2) = ri and the border

of Infeasible Region to skiff i. According to Proposition 2.4, there will be at most one (r′, θ′).

If there is no intersection, any α is feasible to evade skiff i. Hence ᾱi = θi − π. If there is

an intersection, then θi > θ′ implies that direct heading is infeasible and αi = θi − θ′ while

θi ≤ θ′ means direct heading is feasible and ᾱi = θi − θ′.

Given each Ai, we have obtained A, the set of all feasible one-turn policies. Then the

optimal one-turn policy-α∗ can be found in A as |α∗| = min
α∈A
|α|. This applies to any number

of chasing skiffs.

There are some special cases where the optimal α∗ can be identified as one αi, the

optimal one-turn policy to one of the skiffs. Consider some examples with two skiffs. When
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the two skiffs are on the different sides, if ᾱ2 ≤ α1 ≤ 0, the optimal one-turn policy α∗ = α1.

When the two skiffs are on the same side, if max{α1, α2} ≤ min{2θ1 − α1, 2θ2 − α2}, then

the optimal one-turn policy is α∗ = max{α1, α2}; otherwise, there is no feasible one-turn

policy.

3.3 Two-Turn Policy

When there are two skiffs, analytical properties of the two-turn policy are hard to derive

because there are various cases to discuss. The complexity against the single-skiff case can

be shown by the existence of feasible policies. For the problem with a single skiff, if there is

no feasible one-turn policy, then there is no feasible two-turn policy either, because the one-

turn policy α = θ is the safest policy. For the problem with two skiffs, the non-existence of

feasible one-turn policies does not necessarily imply there are no feasible two-turn policies.

When there is no feasible one-turn policy with respect to two skiffs, there are actually two

scenarios. First, there is no feasible one-turn policy with respect to one of the skiffs; in this

case, there exists no two-turn policy with respect to the two skiffs. Second, there exist a

set of feasible one-turn polices with respect to each skiff separately, but there is no overlap

between the two sets; in this case, it is possible that there exist feasible two-turn policies.

The analysis of two-turn policy for the two-skiff case is still based on the two-turn policy

for the one-skiff case, which includes finding an optimal turning time for a pair of turning

directions and the range of feasible turning directions. We first discuss the turning time.

Given (α1, α2) as the two turning directions of a two-turn policy, we can find an optimal

turning time τ i(α1, α2) with respect to each single skiff i. Since usually τ1(α1, α2) 6=

τ2(α1, α2), we need to determine an optimal turning time τ∗(α1, α2) which is optimal with

respect to the problem with two skiffs. From Proposition 2.5, we know the set of feasible

turning time to skiff i, denoted by T i, is either [0, τ i(α1, α2)] or [τ i(α1, α2), T ], depending on

the specific values of (α1, α2). Consequently, τ∗(α1, α2) can be determined by checking the

intersection of T 1 and T 2. If the intersection is empty, then there is no feasible turning time.

If the intersection is non-empty, only the two-turn policies with turn time being τ i(α1, α2)

might be Pareto-optimal two-turn policy.

39



www.manaraa.com

We can determine the range of feasible turning directions as follows.

Consider the case where the two skiffs are on the same side of the vessel as shown in

Figure 3.2. Recall that we use Ai to denote the set of feasible turning direction of the

one-turn policy with respect to skiff i, where Ai ⊂ (−π, π) and i = 1, 2. We assume that

θ2 > θ1. Then Table 3.1 shows how to identify the potential sets of (α1, α2) of the Pareto-

optimal two-turn policies. The first condition implies whether one-turn policy exists or not,

in which “ Yes” means one-turn policy does not exist and “No” otherwise. The other three

conditions reflect the relative position of α1 and α2, which somehow implies which skiff is

more dangerous.

Table 3.1: Possible set of (α1, α2) for a Pareto-optimal two-turn policy when the two skiffs
are at the same side of the vessel

α1 + α2 > 2θ1 α1 > α2 α2 > θ1 θ2 > 2θ1 − α1 potential sets

Yes / / /
i) α1 ∈ A1, α2 ∈ [α2, θ2],

ii) α1 ∈ [α2, θ2], α2 ∈ A1

No Yes / No i) α1 ∈ [α1, θ2], α2 ∈ [−π/2, α1]

No Yes / Yes
i) α1 ∈ [2θ1 − α1, θ2], α2 ∈ A1;

ii) α1 ∈ [α1, 2θ1 − α1], α2 ∈ [−π/2, α1]

No No No No i) α1 ∈ [α2, θ2], α2 ∈ [−π/2, α2]

No No No Yes
i) α1 ∈ [2θ1 − α1, θ2], α2 ∈ A1 ;

ii) α1 ∈ [α2, 2θ1 − α1], α2 ∈ [−π/2, α2]

No No Yes No

i) α1 ∈ [2θ1 − α1, θ2], α2 ∈ A1;

ii) α1 ∈ [α2, 2θ1 − α1], α2 ∈ [−π/2, α2];

iii)α1 ∈ [α1, α2], α2 ∈ [2θ1 − α1, θ2]

No No Yes Yes i) α1 ∈ [α1, α2], α2 ∈ [−π/2, α2]

Now we will give a brief explanation of of some cases, taking the first three cases as

examples. In the first case, α1 + α2 > 2θ1, i.e., α2 > 2θ1 − α1, which implies that there is

no feasible one-turn policy as we assume θ2 > θ1. At this time, to find a feasible two-turn

policy, the vessel needs to choose one direction from each Ai, i = 1, 2. But any feasible turn

policy which contains a turn angle belonging to [θ2, 2θ2−α2] will be dominated by a smaller
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turn angle belonging to [α2, θ2]. Hence, the potential sets of (α1, α2) in the Pareto-optimal

policy is i) α1 ∈ A1, α2 ∈ [α2, θ2]; ii) α1 ∈ [α2, θ2], α2 ∈ A1. Meanwhile, in the second and

third case, one-turn policy exists from the first condition. The second condition implies

that A1 ⊂ A2. The optimal one-turn policy is α1. At this time, pirate 1 is much more

dangerous than pirate 2. Thus the Pareto-optimal policy mainly relies on the position of

the pirate 1, and the potential set is α1 ∈ [α1, θ2], α2 ∈ [−π/2, α1] in the second case, and

i) α1 ∈ [2θ1 − α1, θ2], α2 ∈ A1; ii) α1 ∈ [α1, 2θ1 − α1], α2 ∈ [−π/2, α1] in the third case,

respectively.

Secondly, the two pirate skiffs are on the two sides of the vessel. In the first case, direct

heading is infeasible for the vessel to evade neither pirates. There might or not exists one-

turn policy. At this time, it will be complex to reduce the potential region. Just choose one

direction from each Ai, i = 1, 2 to find the feasible two-turn policy.

The other three cases occur when direct heading policy is assumed to be feasible to

skiff 1. In the second case, the optimal one-turn policy is α2. And it will degenerate to the

problem to evade the chasing from pirate 2 only, and thus the potential set of Pareto-optimal

policy is α1 ∈ [α2, θ2], α2 ∈ [−π/2, α2]. In the third case, the optimal one-turn policy is still

α2. The whole regions can be divided into three intervals: [−π/2, α2], [α2, ᾱ1] and [ᾱ1, θ2].

When α1 ∈ [−π/2, α2], any α2 ∈ [α2, ᾱ1] will be dominated by replacing the sequence of

the two turn angles. Hence, we only need to consider α2 ∈ [ᾱ1, θ1]. When α1 ∈ [α2, ᾱ1], we

only need α2 ∈ [−π/2, α2]. When α1 ∈ [ᾱ1, θ2], the vessel needs to choose a turn angle from

A1. If α2 ∈ [α2, ᾱ1], such a two-turn policy will be dominated by replacing the sequence of

α1, α2, which is definitely dominated by the optimal one-turn policy. Therefore, we only

need α2 ∈ [−π/2, α2]. Thus we can conclude the potential sets as in the table.

Above all, we are able to conduct the computational experiments for any given two

initial positions of the pirate skiffs. In fact, when we are checking the feasibility of a two-

turn policy where the two pirates are on the different sides of the vessel, we may rotate the

coordinate the system to make the pirates on the same side of the vessel.

The following two computational experiments help illustrate the unique feature of the

two-turn policy with multiple skiffs.
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Table 3.2: Potential sets of (α1, α2) in Pareto-optimal two-turn policy when different sides

conditions on α1, α2, ᾱ1 potential sets

α2 > 0 > α1
i) α1 ∈ A1, α2 ∈ A2;

ii) α1 ∈ A2, α2 ∈ A1

ᾱ1 > θ2 i) α1 ∈ [α2, θ2], α2 ∈ [−π/2, α2] for pirate 2 only

α2 ≤ ᾱ1 ≤ θ2

i) α1 ∈ [α2, θ2], α2 ∈ [−π/2, α2];

ii) α1 ∈ [−π/2, α2], α2 ∈ [ᾱ1, θ2]

ᾱ1 < α2
i) α1 ∈ [α2, θ2], α2 ∈ [−π/2, ᾱ1];

ii) α1 ∈ [−π/2, ᾱ1], α2 ∈ [α2, θ2]
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A feasible two−turn policy
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r2(T) = 0.2

Figure 3.3: Example of feasible two-turn policy when no one-turn policy

In Figure 3.3, two spirates are found at the symmetric position (0, 9) and 0,−9. The

speed of the vessel is 20 knots, while the speed of both pirate skiffs are 25 knots. We

consider the safety distance as R = 0.2 nmi and the chasing time is T = 1hr. There is

no one-turn policy for the commercial vessel. However, we can find a feasible two-turn

policy (0.667,−0.079, 0.079) for the vessel. In Figure 3.4, we fix the position of pirate 2 and

change the position of pirate 1. We use the two two-turn policy which maximizes x(T ) or

minimizes |y(T )| as example. When pirate 1 is at (−5, 20), direct heading policy is infeasible

with respect to neighter pirate 1 nor pirate 2. There is no feasible one0turn policy and the

computational result shows that there exists no feasible two-turn policy. When pirate 1 is
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Figure 3.4: Influence of pirate’s position on two-turn policies

at (−10, 20), direct heading will be feasible with respect to pirate 1. However, there is still

no one

3.4 Conclusion

In this paper, we extend the result in Chapter 2 to the case where there will be multiple

pirate skiffs chasing the commercial vessel. Some computational experiments are conducted

based on the example of two skiffs. We characterize some unique features of such a general

cases from the case with only one pirate skiffs. The computational results shows that feasible

two-turn policy exists even there is no one-turn policy, which illustrate the effectiveness of

the turn policy.
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CHAPTER IV

SPACE ALLOCATION FOR A FEEDER VESSEL WITH

RESERVED AND SPOT DEMAND

4.1 Introduction

The modern liner shipping network consists of long-haul lines across oceans and feeder lines

serving for a region. Typically, a long-haul line calls for a number of major ports with large

container volumes, and a feeder line, with a major port as its hub port, covers smaller ports

nearby to the hub port. A hub port is the transshipment point of container flows from/to

the small ports on the feeder line.

A feeder line shares some common features with a long-haul line with respect to oper-

ations. For example, both follow a fixed schedule to call for ports, need to transport both

laden containers and empty containers, and have demands with reservations as well as on

the spot. As such, they also face similar operations planning and scheduling problems such

as designing a shipping network at the tactical level, and adjusting vessel speeds at the

operational level.

Due to its large volume and importance to the world economy, the liner shipping has

become research direction in the transportation and logistics. There exists extensive re-

search addressing various aspects of the liner shipping operations; e.g., see recent reviews

of [8]. Nevertheless, we notice that most of such work focuses on long-haul lines, leaving

feeder lines relatively understudied. This may be largely understandable because a feeder

line is often of smaller scale and hence can be regarded as a simpler long-haul line.

However, a feeder line also has its unique features. For example, a feeder vessel has a

hub port, a point which most containers start from or end at; there is not such a special port

in long-haul lines. In addition, a feeder vessel is much smaller, usually with a capacity of

hundreds, at most one or two thousand, of TEUs. Given its small size, how to effectively use
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the limited capacity is challenging, especially when we explicitly consider the uncertainty

in the demands of containers.

Usually a vessel takes the in-advance reservation from shippers who request a certain

space on the vessel. On the spot market there is also new demand without reservation.

The randomness of the demand originates from both the spot market and the reserved

demand. First, the demand on the spot market may come without prior information.

Second, the reserved demand also suffers cancellation, which is the common practice in

the container shipping industry. Shippers can reserve spaces on a vessel, but cancel some

reservation without penalty; however, the feeder vessel has an obligation of fulfilling all

reserved demands. In other words, the vessel has to leave enough space according to the

maximum reservation even if some reservation may be canceled. This causes the capacity

underutilized and opportunity loss of taking more demand from the spot market.

In this paper, we study a capacity allocation problem for a feeder vessel that faces

random demands as explained above. The vessel leaves the hub port, sequentially calls for

a number of ports on a feeder line, and returns the hub. At each port, the vessel collects

some containers and carries them to the hub. This is a common case in the East Asia areas

where the major container flow is for export. In the north America and Europe, the case

is different, where a large volume of import containers need to be delivered from the hub

port to regional ports. This different situation can be formulated in a similar way to our

problem, but the detailed analysis will differ.

We will start with a simpler case where the vessel only collects laden containers when

calling for a port. The demand at each port includes reserved demand and spot demand,

both being random as explained earlier. While fulfilling the realized reservations as a

commitment, the vessel needs to decide how much spot demand to take so as to balance

the tradeoff between the revenue at current port and the expected revenue from the future

ports. We formulate the problem as a Markov decision process, and prove that the optimal

policy is to leave available capacity to the following ports no less than a threshold value.

In addition, we investigate how the threshold values may change with the unit profit for

serving the demand on the spot market.
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We then move to a general case where the vessel not only collects laden containers but

also delivers empty containers from the hub to those regional ports. Both laden and empty

containers share the space of the vessel. So there is a need of coordinating the decision of

laden containers collection and empty container delivery. Considering the random demand

of empty containers also from reservation and spot market, we prove that the total revenue

function is discretely concave, a concept extended from the continuous concavity. This

enables us to establish a two-dimension-threshold policy for joint empty containers delivery

and laden container collection.

From a boarder point of review, our problem belongs to the field of capacity rationing

which studies how to allocate limited resource to different customers who arrive dynamically.

Our problem is special in that there are two types of demands with complementary roles.

While collecting laden containers consumes capacity, delivering empty containers releases

capacity. This leads to a new model of capacity rationing, the contribution of our work

beyond the specific collection of container shipping.

The rest of the paper is organized as follows. In section 4.2, we review the related

literature. In Section 4.3, we study the problem of only collecting laden containers, and in

Section 4.4 we study the problem of both laden containers collection and empty containers

delivery. We conclude the paper in Section 4.5.

4.2 Literature Review

The operations of feeder lines have been largely overlooked by researchers, and only a few

papers have been published in the literature. Some work has focused on feeder network de-

sign. For example, [28] investigate the design of a hub-and-spoke system including selecting

a set of hub ports, allocating spoke ports to each hub port, and determining the calling

sequence of the feeder vessels. [29] study a feeder network problem in which a newcomer

liner service provider aims to maximize its market share against an existing liner shipping

service provider. [30] study a maritime hub-and-spoke network design problem by deter-

mining the liner routing, ship size, and sailing frequency. There is also other work beyond

feeder network design. For example, [31] study the problem for a terminal to serve feeder
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vessels, including designing preferred berthing positions and service time for cyclically vis-

iting feeders, and allocating storage yard space between mother and feeder vessels. As far

as we know, the shipping capacity utilization of a feeder vessel has not been addressed in

the literature.

Our problem has one decision on delivering empty containers, which belongs to empty

container repositioning, an important issue in maritime logistics, e.g.[32], [33], [34]. We

refer to [33] for a comprehensive review for this line of research. The main concern of empty

container repositioning has been on balancing the flow of laden and empty containers. In

this paper our new constraint is the shared capacity between laden and empty containers

on a vessel.

Beyond the field of liner shipping, our work is similar to vehicle routing with a predefined

route, e.g., [35], [36], and [37]. Instead of deciding a visiting sequence to customers in

conventional vehicle routing problem, these papers deal with a problem in which the vehicle

has a given route and the decision is the timing for returning to the hub port for stock

replenishment. This is different from our problem though our problem also has a fixed

route.

Our problem can be regarded as a new type of capacity rationing which assigns a fixed

amount capacity to dynamically arriving customers; e.g., see [38], [39], and [40]. In such

problems, some available capacity is consumed whenever a customer is served. Our model is

new that serving the demand of empty container delivery actually generates new available

capacity for serving the demand of laden container collection.

One key technical concept in our work is the concavity of a discrete multivariate function.

[41] first introduces the concept of discretely convex and concave, which will be used in our

analysis. After than, several different concepts of discrete convexity have been proposed,

according to different locality, such as M−convex function in [42], L−convex function in

[43], M\−convex function in [44] and L\−convex function in [45]. All these convex functions

have the property that the local optimum is the global optimum.

47



www.manaraa.com

4.3 The Problem of Containers Collection

4.3.1 Problem Formulation

We first consider the problem where the feeder only collects laden containers from n different

ports, and transports these containers back to the hub port which is referred as port 0. We

list the major notation in Table 4.1.

Table 4.1: Notation

Qi The available capacity when the vessel arrives at port i, i = 1, 2, · · · , n

R̄i Reserved demand from port i before the vessel leaves hub, i = 1, 2, · · · , n

Ri Demand with reservation from port i, i = 1, 2, · · · , n

ri A realization of Ri

Si Demand on spot market from port i, i = 1, 2, · · · , n

si A realization of Si

pri Unit profit for serving the demand with reservation from port i, i = 1, 2, · · · , n

psi Unit profit for serving the demand on spot market from port i, i = 1, 2, · · · , n

Let Q0 denote the maximum capacity for the feeder vessel. Then Q1 = Q0. Before the

vessel leaves the hub port, it has accepted reservation from each port i for container collec-

tion, where the reserved number of containers is denoted as R̄i, i = 1, 2, · · · , n. However,

the realization of the demand with reservation when the vessel arrives at port i might be

less than R̄i due to late cancellation. We use Ri to denote the after-cancellation random

demand with reservation from port i. The distributions of Ri, i = 1, 2, · · · , n are known to

the feeder vessel. In addition, we use Si to denote the demand on the spot market from

port i, which is also a random variable with a known distribution.

When the vessel arrives at port i, both the demand with reservation and demand on the

spot market are realized. Note that in practice the realized demand information is usually

known before the actual vessel’s arrival, but there is no difference in the model as long as

the information is known after the vessel leaves the proceeding port. Let ri and si denote

the realizations of Ri and Si, respectively. Then the vessel makes a decision on the number

of containers to load at each port. Specially, the vessel has to collect all ri containers

with reservation, after that deciding a suitable number of containers to load from the spot
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market.

The goal of the feeder vessel is to maximize the expected revenue of the whole trip. The

problem can be formulated as a Markov decision process as follows.

Let xri denote the number of reserved containers to collect, and xsi the number of contain-

ers on the spot market to collect. Let πi(Qi, ri, si) denote the maximum expected revenue

from port i to port n, given that the available capacity is Qi when the vessel arrives at

port i, and the realization of demand with reservation and demand on the spot market

are ri and si, respectively; and further let vi(Qi, Qi+1, ri, si) denote the expected maximum

revenue from port i to port n given that the remaining available capacity is Qi+1 when the

vessel leaves port i. As the demand with reservation is guaranteed, we have xri = ri. So,

Qi+1 = Qi − ri − xsi . To decide xsi is equivalent to decide Qi+1.

Then we have a dynamic programming recursion as follows.

πi(Qi, ri, si) = max
Qi+1

{
vi(Qi, Qi+1, ri, si)|Qi+1 ≥

n∑
j=i+1

R̄j , Qi+1 ∈ {Qi− ri− si, · · · , Qi− ri}
}
, (4.1)

vi(Qi, Qi+1, ri, si) = (pri − psi )ri + psiQi − psiQi+1 + ERi+1,Si+1πi+1(Qi+1, Ri+1, Si+1). (4.2)

The first condition in (4.1) guarantees the full fulfillment to the demand with reservation

from the future ports, and the second one reflects the range of spot demand at current port

i. Consider the initial condition when the vessel arrives at port n. Since this is the last

stop, the vessel will collect as many containers as possible. Hence, assuming Qn ≥ R̄n to

guarantee the demand with reservation from port n, we have

πn(Qn, rn, sn) =


prnrn + psn(Qn − rn), if Qn < rn + sn,

prnrn + psnsn, if Qn ≥ rn + sn.

(4.3)

The objective of the vessel is to maximize the expected revenue of the whole trip. Given

that Q1 = Q0, the objective is thus equivalent to maximize π1(Q0, r1, s1). Solving the above

dynamic programming, we are able to figure out the serving policy for the vessel to collect

containers at each port i.

4.3.2 Optimal Serving Policy

The following theorem characterizes the optimal serving policy at each port i. The policy

is based on a threshold value Q∗i+1. According to the remaining available capacity after
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serving the demand with reservation Qi − ri and Q∗i+1, the serving level to the demand on

the spot market can be determined. There are three scenarios.

Theorem 4.1. At each port i, there exists a threshold value Q∗i+1 for the remaining available

capacity when the vessel leaves port i, such that the corresponding optimal serving policy is

xs∗i =



0, if Qi − ri ≤ Q∗i+1

min{Qi − ri −Q∗i+1, Qi − ri −
n∑

j=i+1
R̄j}, if Q∗i+1 ≤ Qi − ri ≤ Q∗i+1 + si

min{si, Qi − ri −
n∑

j=i+1
R̄j}, if Qi − ri ≥ Q∗i+1 + si

In the first scenario, the remaining capacity Qi − ri is too low compared with the

threshold Q∗i+1. So the vessel takes zero spot demand at port i, leaving all remaining

capacity to future ports. In the second scenario, the remaining capacity is above Q∗i+1,

but still not high enough. The vessel can serve partial spot demand, making remaining

capacity at min{Q∗i+1,
∑n

j=i+1 R̄j} to future ports. In the third scenario, there is sufficient

remaining capacity such that the vessel can take more demand from the spot market; but

the remaining capacity to future ports still has a lower bound of
∑n

j=i+1 R̄j .

The implication of Theorem 4.1 is that the vessel needs to strategically leave certain

available capacity for serving spot demand at future ports, rejecting some spot demand at

current port. This is a reasonable decision when the future ports have higher unit revenue.

While this seems straightforward, the theorem further points out that Q∗i+1, the level of

capacity left for future ports, is in independent of demand level at the current port i, which

may not be intuitive.

The following theorem reveals how the threshold value Q∗i+1 may depend on the unit

profit of the spot demand between two adjacent ports.

Theorem 4.2. For two ports i and i + 1, if psi < psi+1, then Q∗i+1 > Q∗i+2; if psi ≥ psi+1,

then Q∗i+1 − R̄i+1 ≤ Q∗i+2.

When psi < psi+1, i.e., the spot demand at port i is less profitable than that at the next

port i+ 1, we should leaving certain capacity targeting for the spot demand at port i+ 1.

This is indicated by Q∗i+1 > Q∗i+2. When psi ≥ psi+1, i.e., the spot demand at port i is no
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less profitable than that at the next port i+ 1, there is no reason to leave any capacity for

the spot demand at port i+ 1. We only need to guarantee the demand with reservation at

port i+ 1. This is indicated by Q∗i+1 − R̄i+1 ≤ Q∗i+2.

Theorem 4.2 can be illustrated by the following example with n = 8 ports. At each port

i, the demand with reservation Ri follows a binomial distribution B(N, p) with N = 50, and

p = 0.9. Note that R̄i = N = 50 also. Similarly, the demand on the spot market Si follows

a binomial distribution B(N, p) with N = 100 and p = 0.5. The unit profit of spot demand

psi at each port is given in Table 4.2, and the unit profit of demand with reservation pri = 0

as it pri will not change the threshold values.

Table 4.2: Illustration of Theorem 4.2

Port No. 1 2 3 4 5 6 7 8

psi 50 70
:::
140

::
90 130 145 130 90

Q∗i+1 663 560 282
:::
354 213 100 50 /

Q∗i+1 − R̄i+1 613 510
:::
232 304 163 50 0 /

Table 4.2 gives the corresponding threshold values. The case of i = 1 shows the first

statement in Theorem 4.2 where ps1 = 50 < ps2 = 70. It shows that Q∗2 = 663 > Q∗3 = 560.

The case of i = 3 shows the second statement where ps3 = 140 > ps4 = 90. We see that

Q∗4−R̄4 = 232 < Q∗5 = 354. The second statement can also be shown by the ports i = 6, 7, 8

where ps6 > ps7 > ps8. We can see that the vessel will only leave available space to guarantee

the demand with reservation at ports 7 and 8.

4.4 Simultaneous Collection and Delivery

In practice, a vessel not only collects laden containers from each port, but also does empty

container repositioning, i.e., carrying empty containers from the hub port and delivering

them to regional ports. Usually transporting laden containers has a high unit profit, which

is the major revenue source to the vessel. Delivering an empty container is much less

profitable, even a pure cost operation to the liner. Therefore, it is reasonable to prioritize

the decision of laden containers collection due to its higher importance, which justify the

model studied in the above section.

51



www.manaraa.com

Nevertheless, to make the decision more rigorous, we need an extended model that si-

multaneously considers the laden containers collection and empty containers delivery. These

two decisions are correlated because both laden and empty containers share the common

capacity of the vessel.

4.4.1 Problem Description

The feeder vessel needs to serve two types of demands, laden containers collection and

empty containers delivery. To model the demand of empty containers, we propose a generic

model that assumes the demand of empty containers at each port can also be classified into

demand with reservation and demand from spot, similar to the case of laden containers. This

model includes different scenarios as special cases. For example, there may be no empty

containers reservation, or empty container reposition may be planned by the liner (and

hence the demand becomes deterministic to the vessel). Our model has a high flexibility

to incorporate these cases. For the same reason, we assume each empty container delivery

generate some profit which may be regarded as a negative cost when empty container

repositioning is a cost-only operation.

To denote the different demands, we need some new notation which is summarized in

Table 4.3. We will omit the detailed explanation to each notation since the meaning is clear

from the above discussion.

The four random variables Ri, Si, Di, and Ei will be realized when the vessel arrives at

port i, where the realized values are denoted by ri, si, di, and ei, respectively. The feeder

vessel then decides the numbers of laden containers to pick up from and empty containers

to deliver to port i. Since additional space will be released after empty containers delivery,

it is critical for the vessel to make decisions together.

Let xri , x
s
i denote the numbers of laden containers with reservation and on spot market

the vessel pick up from port i, i = 1, 2, · · · , n, respectively. And let xdi , x
e
i denote the

numbers of empty containers with reservation and on spot market it delivers to port i,

i = 1, 2, · · · , n, respectively. Due to the commitment that demand with reservation must

be guaranteed, we have xri = ri and xdi = di. Similar to the problem of collection only, we
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Table 4.3: Notation for the extended model

Qpi Available capacity when the vessel arrives at port i, i = 1, 2, · · · , n

Qdi Number of empty containers when the vessel arrives at port i, i = 1, 2, · · · , n

R̄i Reserved demand for laden containers from port i, i = 1, 2, · · · , n

S̄i Reserved demand for empty containers from port i, i = 1, 2, · · · , n

Ri Demand with reservation for laden containers from port i, i = 1, 2, · · · , n

ri A realization of Ri, i = 1, 2, · · · , n

Si Demand on spot market for laden containers from port i, i = 1, 2, · · · , n

si A realization of Si, i = 1, 2, · · · , n

Di Demand with reservation for empty containers from port i, i = 1, 2, · · · , n

di A realization of Di, i = 1, 2, · · · , n

Ei Demand on spot market for empty containers from port i, i = 1, 2, · · · , n

ei A realization of Ei, i = 1, 2, · · · , n

pri Unit profit for serving laden containers with reservation from port i, i = 1, 2, · · · , n

psi Unit profit for serving laden containers on spot market from port i, i = 1, 2, · · · , n

pdi Unit profit for serving empty containers with reservation from port i, i = 1, 2, · · · , n

pei Unit profit for serving empty containers on spot market from port i, i = 1, 2, · · · , n

define the maximum expected revenue πi(Q
p
i , Q

d
i , ri, si, di, ei) from port i to port n, given

that the remaining available space when the vessel arrives at port i is Qpi , the remaining

number of empty containers is Qdi and the realizations of demand with reservation and

on spot market for laden containers and empty containers are ri, si, di, ei, respectively.

Therefore, Qdi+1 = Qdi − di − xei and Qpi+1 = Qpi +Qdi −Qdi+1 − ri − xsi .

To decide xsi and xei , it is equivalent to deice Qpi+1 and Qdi+1. Our following discussion will

be based onQpi+1 andQdi+1 to simplify the notation. Define vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei)

as the maximum expected revenue from port i to port n, given additional constraints that

remaining available space and remaining number of empty containers are Qpi+1 and Qdi+1,

respectively.

Thereafter, we can obtain the dynamic programming directly as follows.
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πi(Q
p
i , Q

d
i , ri, si, di, ei) = max

Qpi+1,Q
d
i+1

vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) (4.4)

s.t. Qpi+1 ∈ {Q
p
i +Qdi −Qdi+1 − ri − si, · · · , Q

p
i +Qdi −Qdi+1 − ri}

Qdi+1 ∈ {Qdi − di − ei, · · · , Qdi − di}

Qpi+1 ≥
n∑

j=i+1

R̄j

Qdi+1 ≥
n∑

j=i+1

D̄j

(4.5)

where

vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei)

=(pri − psi )ri + (pdi − pei )di + psiQ
p
i + (psi + pei )Q

d
i − psiQ

p
i+1 − (psi + pei )Q

d
i+1

+ ERi+1,Si+1,Di+1,Ei+1πi+1(Qpi+1, Q
d
i+1, Ri+1, Si+1, Di+1, Ei+1)

(4.6)

The first two constraints shows the demand for laden containers and empty containers

while the last two constraints is to guarantee the demand with reservation under the worst

case where there will be no demand for empty containers from the future ports in the third

constraint. The first six items in the vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) calculate the revenue

generated from current port i and ERi+1,Si+1,Di+1,Ei+1πi+1(Qpi+1, Q
d
i+1, Ri+1, Si+1, Di+1, Ei+1)

represents the expected maximum revenue from the future ports. To simplify the notation,

define hi(Q
p
i+1, Q

d
i+1) , ERi+1,Si+1,Di+1,Ei+1πi+1(Qpi+1, Q

d
i+1, Ri+1, Si+1, Di+1, Ei+1). Max-

imizing vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) is to find the trade-off between the demand on

current port i and the uncertain demand from the future port.

The boundary condition for the above dynamic programming is the maximum expected

revenue at the last port n, as follows (Qpn ≥ R̄n and Qdn ≥ D̄n are assumed).

πn(Qpn, Q
d
n, rn, sn, dn, en) = (prn − psn)rn + (pdn − pen)dn + psnQ̂

p
n + penQ̂

d
n (4.7)

where Q̂dn = min{Qdn, dn + en} and Q̂pn = min{Qpn + Q̂dn, rn + sn}

Same as in the problem of collection only, we can conclude that the serving policy is

independent with pri and pdi since the expected revenue generated by the demand with
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reservation from future ports is constant value independent with the serving policy for the

demand on spot market. So we can simply set pri = pdi = 0 for all i = 1, 2, · · · , n.

Assume the initial available space and number of empty containers are Qp0, Q
d
0. The

objective of the vessel is to maximize π1(Qp0, Q
d
0, r1, s1, d1, e1) when the vessel arrives at

port 1. Furthermore, if we assume the maximum capacity of the feeder vessel is Q0, the

objective of the feeder vessel is to find the optimal (Qp0, Q
d
0) such that the expected revenue

of the whole trip can be maximized.

4.4.2 Preliminary

Before presenting the optimal serving policy, we first introduce some technical concept used

in our analysis: discretely convex function and submodular function.

There are multiple ways of defining the discrete convexity/concavity on discrete space

according to different definitions of locality. In our work, we will concentrate on discretely

convexity, which is first proposed by [41].

Let S be a subspace of a discrete n dimensional space Zn where Z is the set of integers.For

any real value vector z ∈ Rn, its neighborhood in S is defined as N(z) = {u ∈ S :‖ u−z ‖<

1}. Here, ‖ u ‖ denotes maxi{ui}.

Definition 4.1. A function f : S → R is a discretely convex function if ∀x1, x2 ∈ S and

any α ∈ (0, 1), it holds that

αf(x1) + (1− α)f(x2) ≥ min
u∈N(αx1+(1−α)x2)

f(u)

If f(x) is discretely convex function, then −f(x) is a discretely concave function. The

following lemma in [41] introduces the locality of a discretely convex function and that local

optimum is also the global optimum.

Lemma 4.1. Consider a discretely convex function f : S → R and x0 ∈ S. If f(x0) ≤ f(x)

for all x ∈ S satisfying ‖ x− x0 ‖= 1, then f(x0) ≤ f(x) for all x ∈ S, i.e., x0 is the global

minimum.

Similarly, a local maximum of a discretely concave function is a global maximum. The

following lemma gives the preservation of discretely concavity over optimization.
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Lemma 4.2. If f(x, y) : S → R is a discretely concave function, where S = S1 × S2,

x ∈ S1, y ∈ S2, then

g(x) = max
y∈S2

f(x, y)

is a discretely concave function.

It turns out that our profit functions are discretely concave, which is given by the

following theorem.

Theorem 4.3. For any port i, vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) and πi(Q

p
i , Q

d
i , ri, si, di, ei)

are discretely concave for any (ri, si, di, ei).

We also need the concept of submodularity.

Definition 4.2. A function f : S → R is submodular if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (∀x, y ∈ S),

where x ∨ y = (max{xi, yi}) and x ∧ y = (min{xi, yi}).

If a function f : S → R, where S = S1 × S2, is submodular, then for any x1 ∈ S1,

x2 ∈ S2, f(x1 + 1, x2)− f(x1, x2) is nonincreasing on x2.

4.4.3 Serving Policy

At a port i, an optimal decision with respect to (Qpi+1, Q
d
i+1) can be made based on

(Qpi , Q
d
i , ri, si, di, ei), which is the solution of (4.4)-(4.6). We will show that the optimal

solution follows a two-dimensional threshold policy. Specifically, the decision at port i

should be trying to make the vessel being at an ideal status, denoted by (Qp∗i+1, Q
d∗
i+1) when

departing from port i; the complexity emerges if (Qp∗i+1, Q
d∗
i+1) is not achievable, where we

should decide which one of Qp∗i+1 and Qd∗i+1 should be approached first.

Specifically, consider (4.4)-(4.6). If we relax the constraints on (Qpi+1, Q
d
i+1) specified in

(4.5), the optimal solution will be independent of the current status (Qpi , Q
d
i , ri, si, di, ei).

This is true because these variables have a constant contribution to (4.6) . We denote this

optimal solution by (Qp∗i+1, Q
d∗
i+1), which is just the ideal status for the vessel to achieve

when leaving port i.
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The question now is how to test if (Qp∗i+1, Q
d∗
i+1) can be achieved. To this end, we define

some notation which will help us identify different scenarios of the serving policy. Let

ci , Qpi +Qdi − ri, and c∗i , Qp∗i+1 +Qd∗i+1,

where ci denotes the summation of remaining available capacity and empty containers after

the collection of laden containers with reservations at port i, and c∗i is the ideal value of

the summation of remaining available capacity and empty containers after the collection of

laden containers from the spot market.

We first have an ideal scenario where (Qp∗i+1, Q
d∗
i+1) can be achieved after serving the

demands from the spot market. We define Si , {(Qpi , Qdi ) : Qdi ∈ {Qd∗i+1 + di, · · · , Qd∗i+1 +

di + ei}, ci ∈ {c∗i , · · · , c∗i + si}}. For any pair of (Qpi , Q
d
i ) ∈ Si, the vessel is able to achieve

(Qp∗i+1, Q
d∗
i+1) by taking decisions as follows.

Theorem 4.4. When (Qpi , Q
d
i ) ∈ Si, the optimal policy for serving the demand on the spot

market is as follows.
xs∗i = Qpi +Qdi −Q

p∗
i+1 −Qd∗i+1 − ri = ci − c∗i

xe∗i = Qdi −Qd∗i+1 − di.

In the general case, the vessel might not be able to achieve (Qp∗i+1, Q
d∗
i+1). Mathematically,

when this happens, at least one of the constraint in (4.5) will be tight. With respect to

the decisions of xs∗i and xe∗i , at least one of them will be at its boundary, either zero or the

maximum possible value. To show the results, we will differentiate it into two scenarios, 1)

ci 6∈ {c∗i , · · · , c∗i +si}}, and 2) ci ∈ {c∗i , · · · , c∗i +si}}, but Qdi 6∈ {Qd∗i+1+di, · · · , Qd∗i+1+di+ei}.

We refer the former scenario as bounded collection, and the latter scenario as bounded

delivery .

The following results are based on an condition that πi+1(Qpi+1, Q
d
i+1, ri+1, si+1, di+1, ei+1)

is a submodular function on (Qpi+1, Q
d
i+1). This is clearly true for i = n. After figuring out

the optimal serving policy, we will prove that the this holds for any i with induction method.

The case of bounded collection

When ci 6∈ {c∗i , · · · , c∗i + si}, we call this as collection first scenario, which means we
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can find out the number of laden containers to pick up from the spot market even be-

fore delivering the empty containers. First of all, we define a problem as follows to help

clarify the optimal serving policy. We slightly change the notation πi(Q
p
i , Q

d
i , ri, si, di, ei) to

πi(Q
p
i , Q

d
i , ĉi, ri, si, di, ei) and vi(Q

p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) to vi(Q

p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ĉi, ri,

si, di, ei) here.

πi(Q
p
i , Q

d
i , ĉi, ri, si, di, ei) = max

Qpi+1,Q
d
i+1

vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ĉi, ri, si, di, ei)

s.t. Qpi+1 +Qdi+1 = ĉi;

Qpi+1 ≥
n∑

j=i+1

R̄j ;

Qdi+1 ≥
n∑

j=i+1

D̄j ;

Qpi+1 ∈ {Q
p
i +Qdi −Qdi+1 − ri − si, · · · , Q

p
i +Qdi −Qdi+1 − ri}

Qdi+1 ∈ {Qdi − di − ei, · · · , Qdi − di − ei}

(4.8)

Such a problem is to reallocate the total capacity ĉi into a suitable number of available

space for laden containers and a suitable number of empty containers to maximize the

expected revenue from port i to port n. Call this problem as space reallocation problem.

Lemma 4.3. For any given Qpi+1 + Qdi+1 = ĉi, vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ĉ, ri, si, di, ei) is a

concave function on Qpi+1 or Qdi+1.

According to Lemma 4.3, we can easily found the optimal (Qpi+1(ĉi), Q
d
i+1(ĉi)) for any

fixed ĉ. And we know when ĉi = c∗i , (Qpi+1(c∗i ), Q
d
i+1(c∗i )) = (Qp∗i+1, Q

d∗
i+1). In addition,

we can expect that Qpi+1(ĉi) and Qdi+1(ĉi) are both nondecreasing on ĉi if we regard the

above problem as allocating the total capacity ĉi into Qpi+1(ĉi) and Qdi+1(ĉi). If the total

capacity is increasing from ĉi to ĉi + 1, it can be regarded as one more capacity to be

allocated to available space for laden containers or empty containers after allocating ĉ into

(Qpi+1(ĉi), Q
d
i+1(ĉi)).

Lemma 4.4. Given that Qpi+1 +Qdi+1 = ĉi, πi(Q
p
i , Q

d
i , ĉi, ri, si, di, ei) is concave on ĉi.
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The optimal ĉi is definitely equal to c∗i . For any given (Qpi , Q
d
i , ri, si, di, ei), the feeder

vessel will try to guarantee a remaining total capacity which is closest to c∗i due to the

concavity. And thus we can conclude the optimal serving policy for the collection first case.

Theorem 4.5. If ci 6∈ {c∗i , · · · , c∗i + si}, the optimal policy for the spot demand is as

following:

xs∗i =


0 if ci < c∗i

min{si, Upi } if ci ≥ c∗i + si

xe∗i =



0 if Qdi − di ≤ Qdi+1(c′i)

Udi if Qdi − di − ei > Qdi+1(c′i)

min{Qdi − di −Qdi+1(c′i), U
d
i }, otherwise

where c′i =


ci if ci < c∗i

ci − si if ci > c∗i + si

and Udi = min{ei, Qdi − di −
n∑

j=i+1
D̄j}, Upi = Qpi + di + Udi − ri −

n∑
i+1

R̄n.

Here, when xs∗i = Li, it means that the remaining number of empty containers is enough

while the available space is insufficient. At this time, the feeder vessel will deliver empty

containers to serve all the demand on the spot market and collect as many laden container

on the spot market as possible.

The case of bounded delivery

Delivery first case occurs when {(Qpi , Qdi ) : Qdi 6∈ {Qd∗i+1 + di, · · · , Qd∗i+1 + di + ei}, ci ∈

{c∗i , · · · , c∗i + si}}. At this time, the vessel could achieve c∗i by picking up ci − c∗i number

of laden containers. Since (Qp∗i+1, Q
d∗
i+1) can not be achieved, it implies that the vessel could

not deliver a suitable number of empty containers. The vessel would deliver no empty

containers or all the empty containers the port requested.

If the number of empty containers to be served for the demand on the spot market is

fixed as xd∗i , the problem will be degenerated into the following problem (k = Qdi − di− xe∗i

denote the remaining number of containers after serving the demand on the spot market):
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πi(Q
p
i , Q

d
i , ri, si, di, ei) = max

Qpi+1

vi(Q
p
i , Q

d
i , Q

p
i+1, k, ri, si, di, ei)

s.t. Qpi+1 ≥
n∑

j=i+1

R̄j ;

Qpi+1 ∈ {Q
p
i +Qdi − k − ri − si, · · · , Q

p
i +Qdi − k − ri}

(4.9)

Due to the nondecreasing first forward difference of the discretely convex function, such

a problem is exactly same as the problem of collection only. Now, let Qpi+1(k) denote the

corresponding threshold value here.

Lemma 4.5. If the optimal remaining available space for laden containers is Qpi+1(k) when

Qdi+1 = k, then Qpi+1(k + 1) ∈ {Qpi+1(k)− 1, Qpi+1(k)}.

When the remaining number of empty containers increases, the optimal remaining avail-

able space for laden containers will be nonincreasing. The increased empty containers have

possibility to provide additional available space, which is of course no more than the in-

creased number of empty containers.

The following theorem illustrates the optimal serving policy for the delivery first case.

Theorem 4.6. For given (Qpi , Q
d
i ) 6∈ Si and ci ∈ {c∗i , · · · , c∗i + si}, the optimal policy for

spot demand would be as following:

xe∗i =


0 if Qdi ≤ Qd∗i+1 + di

min{ei, Ud′i } if Qdi ≥ Qd∗i+1 + di + ei

xs∗i =



0 if Qpi < Qpi+1(k) + ri − di − xe∗i

min{si, Up′i } if Qpi ≥ Q
p
i+1(k) + ri + si − di − xe∗i

min{Qpi + di + xe∗i − ri −Q
p
i+1(k), Up′i } otherwise

where Ud′i = Qdi − di −
n∑

j=i+1
D̄j, U

p′
i = Qpi + di + xe∗i − ri −

n∑
j=i+1

R̄j and k = Qdi − di − xe∗i .

Theorem 4.6 actually states that it is better for the feeder vessel to get the remaining

number of empty containers close to Qd∗i+1, like that Qdi is smaller than the certain number
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(Qd∗i+1), the feeder vessel would not deliver empty containers for the demand on the spot

market.

To achieve the optimal serving policy for both delivery first scenario and collection first

scenario, we need the condition that πi+1(Qpi+1, Q
d
i+1, ri+1, si+1, di+1, ei+1). Next, we will

prove the truth of this condition with induction method.

Theorem 4.7. The maximum expected revenue function πi(Q
p
i , Q

d
i , ri, si, di, ei) is a sub-

modular function on (Qpi , Q
d
i ).

The nonincreasing difference of πi(Q
p
i , Q

d
i , ri, si, di, ei) implies that with a higher Qpi or

Qdi , the unit profit for increasing Qdi or Qpi will be nonincreasing.

4.4.4 Heuristic Policy

Though the optimal serving policy helps save time to solve the dynamic programming, it

is still time consuming, especially when the number of ports increases or the total number

of maximum demand increases. However, in practice, the unit profit for delivering empty

containers is far less than the unit profit for transporting the laden containers back to the

hub port. Therefore, the opportunity revenue by delivering empty containers will be of no

significance compared with the opportunity revenue by picking up laden containers. Hence,

we consider another policy where xe∗i = min{ei, Qdi − di−
n∑

j=i+1
D̄j}. The vessel will deliver

as many empty containers on the spot market as possible at each port. It is very similar to

the delivery first case. With only one decision to be made, the problem can be solved very

efficiently.

Now we rewrite the dynamic programming recursion as follows, to help identify the

improvement of efficiency. The whole process is described into two stage.

πi(Q
p
i , Q

d
i , ri, si, di, ei) = pri ri + pdi di + πAi (Qpi + di − ri, Qdi − di, si, ei) (4.10)

while

πAi (Qpi , Q
d
i , si, ei) = max

Qpi+1,Q
d
i+1

psiQ
p
i +(psi +pei )Q

d
i −psiQ

p
i+1−(psi +pei )Q

d
i+1 +hi(Q

p
i+1, Q

d
i+1).

(4.11)
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When applying the heuristic policy, the problem can be formulated as follows:

πi(Q
p
i , Q

d
i , ri, si, di, ei) = pri ri+pdi di+peix

e∗
i +πBi (Qpi +di+xe∗i −ri, Qdi −di−xe∗i , si) (4.12)

while

πBi (Qpi , Q
d
i , si) = max

Qpi+1

psiQ
p
i − p

s
iQ

p
i+1 + hi(Q

p
i+1, Q

d
i+1). (4.13)

The key challenge to figure out the optimal serving policy and heuristic policy is to

implement ERi+1,Si+1,Di+1,Ei+1πi+1(Qpi+1, Q
d
i+1, Ri+1, Si+1, Di+1, Ei+1). With the commit-

ment of fulfilling the demand with reservation, the decisions could be made sequentially.

When applying the optimal serving policy, the total number of calculation at each port i is

Q̄pi+1Q̄
d
i+1(R̄i+1 + D̄i+1 + S̄i+1Ēi+1). On the other hand, when applying the heuristic policy,

the total number of calculation at each port i is Q̄pi+1Q̄
d
i+1(R̄i+1 + D̄i+1 + S̄i+1 + Ēi+1),

which means the complexity can be reduced based on Ēi+1 compared with the complexity

in optimal serving policy.

4.4.5 Numerical Example

The following example compares the time consuming and the maximum expected revenue

while using different policy. It shows that the maximal expected revenue from the heuristic

policy is almost same as the maximal expected revenue from the optimal serving policy.

We consider that there exists N identical regional ports along the predefined route. The

demands with reservation Ris and Dis follow binomial distribution B(n, p) where n = R̄i =

D̄i = 10 and p = 0.95 for any port i = 1, 2, · · · , N . And demands on spot market Sis

and Eis follow binomial distribution B(n, p) as well, where n = 20 and p = 0.6 for any i =

1, 2, · · · , N . All pri s and pdi s are set as 0. The unit profit pei s = [4, 6, 8, 10, 12, 14, 16, 18, 20, 22]

and psi s = [50, 70, 120, 170, 150, 170, 190, 210, 240]. We conduct 7 experiments by increasing

the number of regional ports from N = 4 to N = 10. To compare the expected revenue, we

consider the initial capacities of the vessel are Qp0 ≈
∑

i(R̄i + ESi), Q
d
0 ≈

∑
i(D̄i + EEi).

We can see that the expected revenues with given (Qp0, Q
d
0) under two policies are almost

same while the time consuming reduces significantly.
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Table 4.4: Comparison of optimal serving policy and heuristic policy

Optimal serving policy Heuristic policy

No. of Ports EΠ,(Qp0, Q
d
0) Time EΠ,(Qp0, Q

d
0) Time

4 4.1061e+03,(60,60) 7.399375 4.0654e+03,(60,60) 0.466776

5 6.2368e+03,(75,75) 13.521676 6.1447e+03,(75,75) 0.945119

6 8.1485e+03,(95,95) 22.200017 8.0327e+03,(95,95) 1.502095

7 1.0256e+04,(110,110) 32.723514 1.0128e+04,(110,110) 2.206308

8 1.2739e+04,(130,130) 46.209880 1.2524e+04,(130,130) 3.208300

9 1.5357e+04,(145,145) 64.880420 1.5114e+04,(130,130) 4.653140

10 1.8333e+04,(160,160) 86.804850 1.8069e+04,(160,160) 6.115205

To apply the heuristic policy, we require the condition that psi � pei . To illustrate the

reasonability, we conduct the following experiment. In this example, we change pei s into

10∗ [4, 6, 8, 10, 12, 14, 16, 18, 20, 22], which is almost same as psi s. The difference between the

maximum expected revenue is much bigger now than it is in Table 4.4.

Table 4.5: Illutration of psi � pei for heuristic policy

No. of Ports 5 6 7 8 9 10

optimal serving policy 8367.5 11285 13997 18310 21813 25648

heuristic policy 7447.0 10127 12717 16156 19377 23009

In addition, we also conduct an experiment to show how the maximum expected revenue

depends on the initial capacity. Note that given an initial capacity of a feeder vessel, we can

optimally allocate the total capacity into the empty space leaving for the laden containers

to be collected from the regional ports and the space for the empty containers on board

to be delivered to the regional ports, before the feeder vessel leaves the hub port. The

decision is made according to the optimal serving policy for the case of bounded collection,

by setting pr0 = ps0 = pd0 = pe0 = 0. Thus, it implies that we can calculate the maximum

expected revenue during the whole trip for any given initial capacity.

In Figure 4.4.5, we present an example to show the relationship between the maximum

expected revenue during the whole trip and the initial capacity. We consider there exists
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N = 5 regional ports along the route, the first 5 ports in the above example. We can see

that the maximum expected revenue is concave on the initial capacity Q0. This is useful for

the carrier to deploy a feeder vessel with suitable initial capacity, based on the estimation

of the cost for deploying a feeder vessel.

100 120 140 160 180 200 220 240 260 280 300
5000

6000

7000

8000

9000

10000

11000
Maximum expected revenue when Q

0
 changes

4.4.6 Extensions

4.4.6.1 Skipping Port

In case the regional port doesn’t make reservation for neither laden containers nor empty

container, the feeder vessel only need serve the demand on the spot market. On the other

hand, the feeder vessel may reject all the demand on the spot market. In other word, the

feeder vessel doesn’t provide any service for this regional port and thus the feeder vessel

may consider to skip such a regional port. We want to discuss the condition such that the

feeder vessel could skip some ports.

Assume that the feeder vessel is now at port i. Let Qpi and Qdi denote the empty space

and the number of empty containers, respectively. And let ri, si, di and ei denote the
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demands. The feeder vessel now need decide whether to skip port i+ 1 or not. First of all,

we need the condition that R̄i+1 = D̄i+1 = 0. Otherwise, the feeder vessel has to call for

port i+ 1 to guarantee the demand with reservation. Thereafter, we have xr∗i+1 = xd∗i+1 = 0.

When the feeder vessel decides to skip port i + 1, it thus implies that xs∗i+1 = xe∗i+1 = 0 in

the original optimal serving policy since the original optimal serving policy maximizes the

expected revenue.

Let (Qp∗i+1, Q
d∗
i+1) denote the ideal state for the vessel when leaving port i and keeping

calling for port i+1 and (Qp∗i+2, Q
d∗
i+2) denote the ideal state for the vessel when leaving port

i + 1. Now that we are given (Qpi , Q
d
i ), (ri, si, di, ei) and (Qp∗i+1, Q

d∗
i+1), we can figure out

the optimal serving policy for the feeder vessel to serve the port i, and assume (Qpi+1, Q
d
i+1)

as the remaining capacity when the feeder vessel leaves port i after applying the optimal

serving policy. Since xs∗i+1 = xe∗i+1 = 0, it thus implies one of the following two scenarios: i)

The case of bounded delivery with no delivery and insufficient empty space for collecting

laden containers; ii) The case of bounded collection with no collection and insufficient empty

containers to deliver to port i+ 1.

In the first scenario, we define S1 = {(Qpi+1 +Qdi+1) : Qdi+1 ≤ Qd∗i+2, Q
p
i+1 ≤ Q

p
i+2(Qdi+1)}

where Qpi+2(Qdi+1) denotes the optimal remaining empty space for the vessel when leaving

port i + 1 given the remaining number of empty containers being Qdi+1. Here, Qdi+1 ≤

Qd∗i+2 means no delivery for port i + 1 while Qpi+1 ≤ Qpi+2(Qdi+1) means insufficient empty

space such that the vessel would collect no laden containers. In the second scenario, We

define S2 = {Qpi+1 + Qdi+1) : Qpi+1 + Qdi+1 ≤ Qp∗i+2 + Qd∗i+2, Q
d
i+1 ≤ Qdi+2(ci+1)} where

ci+1 = Qpi+1 + Qdi+1 and Qdi+2(ci+1) denote the optimal remaining empty containers given

Qpi+2 + Qdi+2 = ci+1 for the case of bounded collection. Here, Qpi+1 + Qdi+1 ≤ Qp∗i+2 + Qd∗i+2

implies no collection for port i + 1 while Qdi+1 ≤ Qdi+2(ci+1) implies insufficient empty

containers implies. If (Qpi+1, Q
d
i+1) ∈ S = S1

⋃
S2, then the vessel could skip port i+ 1.

Note that when the vessel decides to skip port i + 1, the ideal state for the remaining

capacity when the vessel leaves port i will change, and thus we need to revise the optimal

serving policy at port i.
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4.4.6.2 Rejecting Demand with Reservation

In this work, one specific condition is that the realized demand with reservation must be

fulfilled. Now we want to extend into the even more general case where the vessel could

also reject the demand with reservation. At this time, it will incur a penalty. For the spot

demand, there could also be a loss or not for the vessel to reject the spot demand. Such a

problem can be formulated as a Markov decision process as well.

Let xri denote the number of rejected laden containers with reservation and xdi denote

the number of rejected empty containers with reservation, respectively. And Moreover, let

ρri and ρdi denote the penalty for rejecting one unit of laden container and empty container

with reservation, respectively. And let %si and %ei denote the loss for unsatisfying one unit

of laden container and empty container on spot market. In the above problem, we assume

that ρri = ρdi = %si = %ei = 0. We have Qpi+1 = Qpi + Qdi − Qi+1 − (ri − xri ) − xsi and

Qdi+1 = Qdi − (di − xdi ) − xei . Hence, xsi = Qpi + Qdi − Qdi+1 − (ri − xri ) − Q
p
i+1 and xei =

Qdi − (di − xdi )−Q
p
i+1.

Thereafter, the dynamic programming recursion is then as follows.

πi(Q
p
i , Q

d
i , ri, si, di, ei) = max

xri ,x
d
i ,Q

p
i+1,Q

d
i+1

vi(Q
p
i , Q

d
i , x

r
i , x

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei) (4.14)

s.t. xri ∈ {0, · · · , ri}

xdi ∈ {0, · · · , di}

Qpi+1 ∈ {Q
p
i +Qdi −Qdi+1 − (ri − xri )− si, · · · , Q

p
i +Qdi −Qdi+1 − (ri − xri )}

Qdi+1 ∈ {Qdi − (di − xdi )− ei, · · · , Qdi − (di − xdi )}

Qpi+1 ≥
n∑

j=i+1

R̄j

Qdi+1 ≥
n∑

j=i+1

D̄j

(4.15)
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where

vi(Q
p
i , Q

d
i , x

r
i , x

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei)

=(pri − psi − %si )ri + (pdi − pei − %ei )di + (psi + %si − pri − ρri )xri + (pei + %ei − pdi − ρdi )xdi

+ (psi + %si )Q
p
i + (psi + %si + pei + %ei )Q

d
i − (psi + %si )Q

p
i+1 − (psi + %si + pei + %ei )Q

d
i+1

− psisi − pei ei + ERi+1,Si+1,Di+1,Ei+1πi+1(Qpi+1, Q
d
i+1, Ri+1, Si+1, Di+1, Ei+1)

(4.16)

Such a problem can be solved computationally, however, we can not point out the opti-

mal serving policy given (Qpi , Q
d
i ) and (ri, si, di, ei) since there exists four decision variables

now.

4.5 Conclusion & Future Work

In this work, we consider a space allocation problem in the feeder lines, Two cases are

studied: i) problem of collection only; ii) problem of collection and delivery. A predefined

route is assumed for the feeder vessel during the trip. We investigate the optimal loading

and unloading policy for the vessel to pick up laden containers and deliver empty containers,

given random demand with known distributions. The demand is divided into two types:

demand with reservation and demand on the spot market. Our future work mainly focuses

on feeder network design and the frequency of feeder service.
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CHAPTER V

CONCLUSIONS

To summarize, we study two issues about the maritime logistics management in this thesis.

One is about the maritime security caused by piracy activities and the other is about

container planning in the feeder lines.

In Chapter 2, we investigate some evading policies for a commercial vessel being chased

by one pirate skiff. For the direct heading policy such that the vessel could maintain its

direction, we derive the feasibility condition under different speed ratios and develop some

algorithms to generate the infeasible regions. When the direct heading policy is infeasible

for the vessel, we then discuss how to find a feasible one-turn and two-turn policy and how

to optimize the one-turn and two-turn policy, based on the concept of Pareto optimal policy.

The result shows that in the two-turn policy, the vessel should select a large turn angle at

first and then select a small turn angle to move back to the planned lane.

In Chapter 3, we extend the result in Chapter 2 into the situation where there are

multiple pirate skiffs chasing the commercial vessel. We investigate the optimality condition

for the three policies in Chapter 2 and discuss about how to find the feasible policies. Several

computational experiments are conducted and they show some interesting result.

In the future work, we may focus on the following extensions. The first one is to consider

different guidance laws for the pirate skiff, like proportional navigation in Chapter 2, or the

pirate could make decision upon the vessel’s action. In addition, note that we assume the

pirate skiffs do not cooperate when chasing the commercial vessel in Chapter 3. We may

study how the cooperation between the pirate skiffs influence the commercial vessel’s action.

In Chapter 4, we study a problem for a feeder vessel to collect laden containers and

deliver empty containers. The route of the feeder vessel is predefined. And there are

two types of demand on the market, demand with reservation which need be guaranteed

and demand on spot market which induces a higher profit. We first provide the optimal
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serving policy if the vessel only needs to collect laden containers or deliver empty containers,

and show some properties of the optimal serving policy. Thereafter, we derive the optimal

serving policy where the vessel has to simultaneously collect the laden containers and empty

containers.

There are several interesting research directions of such a problem. First, we may extend

the problem to the case where the feeder vessel would serve the feeder line periodically,

according to a fixed schedule. Under the dynamic process, the demand not satisfied during

this trip could be backlogged. Then it comes a question how to determine the optimal

serving frequency, and may even the relationship between the container capacity of the

feeder vessel and the serving frequency. Second, we may consider the design of a feeder

network. Due to the limited capacity of a feeder vessel, the feeder vessel may have to

decline the most of the demand on the spot market. Then it may be possible to divide

these ports into several clusters serving by multiple feeder vessels, and thus most of the

demand could be satisfied. The way to divide the ports and the capacity of the feeder

vessel is worth deep investigation.
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APPENDIX A

TECHNICAL SUPPORTS FOR CHAPTER II

A.1 Proof of Lemma 2.1

From (2.2), the dynamic process of r(t) can be described by the following differential equa-

tion

dr(t)

dt
=

2(xv(t)− xp(t))(dxv(t)
dt −

dxp(t)
dt ) + 2(yv(t)− yp(t))(dyv(t)

dt −
dyp(t)

dt )

2r(t)
.

From (2.3), we can simplify it to

dr(t)

dt
= vv(t) cos(α(t)− θ(t))− vp(t) cos(β(t)− θ(t)). (A.1)

Therefore, with respect to β(t), dr(t)
dt is minimized when β(t) = θ(t).

A.2 Proof of Lemma 2.2

We first consider the case γ > 1.

Consider (2.11). Since lim
t→(

C0C2
vv

)
−

rhs of (2.11) = 0, we have lim
t→(

C0C2
vv

)
−

lhs of (2.11) = 0.

This implies that lim
t→(

C0C2
vv

)−
θ(t) = 0 because the two terms of the lhs of (2.11) are both non-

negative. Moreover, lim
t→(

C0C2
vv

)−
r(t) = lim

t→(
C0C2
vv

)−
C0

tanγ θ(t)
2

sin θ(t)
= lim

t→(
C0C2
vv

)−
C0

sinγ−1 θ(t)

(1 + cos θ(t))γ
=

0. Besides, both r(t) and θ(t) are strictly decreasing on t when θ(t) > 0, and θ(t) = 0 after

θ(t) = 0 since dθ(t)
dt = 0 before r(t) = 0. Therefore, θ(t) > 0 when t < C0C2

vv
and θ(t) = 0

when t ≥ C0C2
vv

. Hence, we can conclude that τ = C0C2
vv

by the definition of τ .

Next, we will prove the non-existence of τ when γ < 1 by a contradiction.

We first assume such a finite τ exists for any given γ < 1, and the corresponding relative

distance is denoted by r(τ). As τ is finite, the reduced relative distance will be no more

than vvτ(γ − cos θ0), which implies r(τ) must be finite as well.

When γ = 1, we prove a contradiction by considering the continuity of θ(t). Note that

lim
t→τ−

θ(t) = 0 implies lim
t→τ−

lhs of (2.10) = +∞. In addition, lim
t→τ−

rhs of (2.10) = lim
t→τ−

vvt

C0
+
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C1 =
vvτ

C0
+ C1. Since τ is finite, vvτ

C0
+ C1 must be finite. Therefore, lim

t→τ−
rhs of (2.10) 6=

lim
t→τ−

lhs of (2.10), which implies a contradiction and thus such a finite τ doesn’t exist.

When γ < 1, we prove a contradiction by considering the continuity of r(t). As

lim
t→τ−

θ(t) = 0, r(t) = C0
tanγ θ(t)

2

sin θ(t)
for t ∈ [0, τ−]. Due to the continuity of r(t), we thus have

lim
t→τ−

r(t) = lim
t→τ−

C0
tanγ θ(t)

2

sin θ(t)
= lim

t→τ−
C0

sinγ−1 θ(t)

(1 + cos θ(t))γ
= lim

t→τ−
C0

sin1−γ θ(t)(1 + cos θ(t))γ
=

+∞, while we have concluded that r(τ) is finite. Therefore, lim
t→τ−

r(t) 6= r(τ), which implies

a contradiction and thus finite τ does not exist.

A.3 Proof of Proposition 2.1

When γ = 1, (2.9) becomes

r(t) = C0
tan θ(t)

2

sin θ(t)
= C0

sin θ(t)
1+cos θ(t)

sin θ(t)
=

C0

1 + cos θ(t)
. (A.2)

Therefore, when C0 = r0(1 + cos θ0) ≥ 2R, we have r(t) > r0(1+cos θ0)
2 ≥ R for t ∈ [0,+∞),

i.e., Tc does not exist.

When C0 < 2R, we can verify that

t = Tc =
r0 −R

2vv
+
r0(1 + cos θ0)

4vv
ln

r0(1− cos θ0)

2R− r0(1 + cos θ0)
(A.3)

is a solution of (A.2) and (2.10). It is also the unique solution because (2.7) implies r(t) is

strictly decreasing, i.e., r(t) > 0 for t ∈ [0, Tc], and r(Tc) = R.

A.4 Proof of Proposition 2.2

When γ > 1,
dr(t)

dt
= vv(cos θ − γ) < 0 for any t ≥ 0, which means the distance

r(t) between the vessel and the pirate will keep decreasing until r(t) = 0. From (2.11),

lim
t→ r0(γ+cos θ0)

γ2−1

r(t) = 0. So we can claim that Tc ∈
[
0, r0(γ+cos θ0)

γ2−1

)
.

A.5 Proof of Proposition 2.3

1) Since r(t) is a convex function on t, we can solve the first-order condition
dr(t)

dt
=

vv(cos θ(t) − γ) = 0, which shows r(t) is minimized at cos θ(t) = γ, or equivalently, θ(t) =

θ̄(γ). Substitute θ(t) by θ̄(γ) in (2.11), we can get

t̄(γ) = −C0

vv

[ 1

2(γ − 1)
tanγ−1 θ̄(γ)

2
+

1

2(γ + 1)
tanγ+1 θ̄(γ)

2
−C2

]
=
r0(γ + cos θ0)− 2γr̄(γ)

vv(γ2 − 1)
,
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which is the only solution to cos θ(t) = γ due to the strict monotonicity of θ(t) on t.

Therefore, r(t) achieves the global minimum at t̄(γ), and from (2.9), we can get the minimum

distance r(t̄(γ)) = r̄(γ).

2) If θ0 ≤ θ̄(γ), we have θ(t) ≤ θ0 and cos θ(t) ≥ cos θ0 ≥ γ for ∀t ∈ [0,+∞) because

θ(t) is a decreasing function on t. Therefore, r(t) will be increasing on t ∈ [0,+∞). Due to

the assumption r0 ≥ R, Tc does not exist.

If θ0 > θ̄(γ) but r̄(γ) ≥ R, from 1) we know Tc does not exist because r̄(γ) is the

minimum of r(t).

3) Also from 1), if θ0 ≤ θ̄(γ) and r̄(γ) < R, we have Tc < t̄(γ).

A.6 Proof of Proposition 2.4

To simplify the notation, we replace r(T, r0, θ0) and θ(T, r0, θ0) by r(T ) and θ(T ) in the

following proofs.

When γ ≥ 1, the sufficient and necessary condition for the vessel to be safe is degenerate

to r(T ) ≥ R. Thus, to prove the proposition is to prove that r(T ) is increasing on r0 with

fixed θ0 and decreasing on θ0 with fixed r0.

We provide the details of proof when γ > 1. Same analysis can be done with γ = 1 and

the conclusion will be the same.

We first prove the property for r(T, r0, θ0). To simplify the notation, let r(T ) and θ(T )

denote the r(T, r0, θ0), respectively.

The implicit function of θ(T ) is now

1

2(γ − 1)
tanγ−1 θ(T )

2
+

1

2(γ + 1)
tanγ+1 θ(T )

2

=−
vvT tanγ θ0

2

r0 sin θ0
+

1

2(γ − 1)
tanγ−1 θ0

2
+

1

2(γ + 1)
tanγ+1 θ0

2

Taking the derivative with respect to θ0 on both sides, we have

tanγ θ(T )
2

sin2 θ(T )

dθ(T )

dθ0
=

tanγ θ0
2

sin2 θ0
− vvT (γ − cos θ0)

r0

tanγ θ0
2

sin2 θ0
. (A.4)

On the other hand, we have

r(T ) =
r0 sin θ0

tanγ θ0
2

tanγ θ(T )
2

sin θ(T )
.
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Similarly, take the derivative with respect to θ0 on both sides, we have

dr(T )

dθ0
= r0

cos θ0 − γ
tanγ θ0

2

tanγ θ(T )
2

sin θ(T )
+ r0

sin θ0

tanγ θ0
2

(γ − cos θ(T )) tanγ θ(T )
2

sin2 θ(T )

dθ(T )

dθ0

Substituting
dθ(T )

dθ0
into

dr(T )

dθ0
, we can rewrite

dr(T )

dθ0
as

dr(T )

dθ0
=
r(T )(cos θ0 − γ)

sin θ0
+
r0(γ − cos θ(T ))

sin θ0
[1− vvT

r0
(γ − cos θ0)]

=
r0(γ − cos θ(T ))− r(T )(γ − cos θ0)− vvT (γ − cos θ0)(γ − cos θ(T ))

sin θ0
.

Similarly, we can obtain the derivative of r(T ) with respect to r0, which is

dr(T )

dr0
=
r(T ) + vvT (γ − cos θ(T ))

r0
.

When γ > 1, we can rewrite the
dr(T )

dθ0
as following:

dr(T )

dθ0
=

(r0 − r(T )− vvT (γ − cos θ0))(γ − cos θ(T )) + r(T )(cos θ0 − cos θ(T ))

sin θ0

Since r(t) is a monotone decreasing function on t ∈ [0, T ], we can expect r0 ≤ r(T )+vvT (γ−

cos θ0). Besides, θ(t) is a monotone decreasing function as well. Therefore, θ0 > θ(T ) and

cos θ0 < cos θ(T ). Hence,
dr(T )

dθ0
< 0.

And
dr(T )

dr0
> 0, directly from γ > 1.

On the other hand, when γ < 1, the sufficient condition will includes two scenarios: if

t̄(γ) < T , r̄(γ) ≥ R; if t̄(γ) ≥ T , r(T ) ≥ R.

Note that t̄(γ) < T implies cos θ(T )− γ > 0.

Since r̄(γ, r0, θ0) = r0
sin θ0

tanγ θ0
2

tanγ
θγ
2

sin θγ
. the derivatives of r̄(γ, r0, θ0) with respect to r0

and θ0 are as following:

dr̄(γ, r0, θ0)

dr0
=

sin θ0

tanγ θ0
2

tanγ
θγ
2

sin θγ
,

dr̄(γ, r0, θ0)

dθ0
=
r0(cos θ0 − γ)

tanγ θ0
2

tanγ
θγ
2

sin θγ
.

We have
dr̄(γ, r0, θ0)

dr0
> 0 and

dr̄(γ, r0, θ0)

dθ0
< 0. Note that the case cos θ0−γ ≥ 0 is excluded

since r̄(γ, r0, θ0) will have no meaning at that time.

When t̄(γ) ≥ T , it then means cos θ(T )− γ < 0.
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We can directly conclude that
dr(T )

dr0
=
r(T ) + vvT (γ − cos θ(T ))

r0
> 0.

Next, we will prove
dr(T )

dθ0
< 0.

At this time, r(t) will be first decreasing and then increasing. Considering
dθ(T )

dθ0
at

first. Note that θ(T ) is increasing when r0− vvT (cos θ0− γ) > 0, i.e., θ0 < arccos(γ− r0

vvT
)

and decreasing otherwise. If θ0 ∈ [arccos γ, arccos(γ − r0

vvT
)],

dθ(T )

dθ0
> 0. From (A.4), we

will have
dr(T )

dθ0
< 0.

When θ0 ∈ (arccos(γ − r0
vvT

), π), dθ(T )
dθ0

< 0. Rewrite the relationship between r(T ) and

θ(T ) as following:

T =
r0(γ + cos θ0)− r(T )(γ + cos θ(T ))

vv(γ2 − 1)
,

or

vvT (γ2 − 1) = r0(γ + cos θ0)− r(T )(γ + cos θ(T )) (A.5)

Taking the derivative with respect to θ0 on both sides,

0 = −r0 sin θ0 − (
dr(T )

dθ0
(γ + cos θ(T ))− r(T ) sin θ(T )

dθ(T )

dθ0
).

Therefore,

dr(T )

dθ0
(γ + cos θ(T )) = −r0 sin θ0 + r(T ) sin θ(T )

dθ(T )

dθ0
.

Since
dθ(T )

dθ0
< 0, −r0 sin θ0 +r(T ) sin θ(T )dθ(T )

dθ0
<. Besides, we assume that cos θ(T ) > γ >

0. Hence γ + cos θ(T ) > 0 and dr(T )
dθ0

< 0.

Therefore, under the both two scenarios, we have proved the result in Proposition 2.4.

A.7 Proof of Lemma 2.4

To simplify the notation, let r(τ) and θ(τ) denote the relative distance and LOS angle at

τ . And r(T ), θ(T ) denote the relative distance and LOS angle at T when two-turn policy

(τ, α1, α2) is applied. In the first stage where t ∈ [0, τ ], the dynamic process is same as

one-turn policy. Thus
dr(τ)

dτ
and

dθ(τ)

dτ
can be obtained from equations (2.7) and (2.8):

dr(τ)

dτ
= −vv(γ − cos(θ(τ)− α1))

dθ(τ)

dτ
= −vv sin(θ(τ)− α1)

r(τ)

(A.6)

79



www.manaraa.com

Now given r(τ) and θ(τ), the derivatives of θ(T ) and r(T ) on τ will be as following:

tanγ θ(T )−α2

2

sin2(θ(T )− α2)

dθ(T )

dτ
=

tanγ θ(τ)−α2

2

sin2(θ(τ)− α2)

dθ(τ)

dτ
− vvr(τ)− v1(T − τ)

r(τ)2

tanγ θ(τ)−α2

2

sin(θ(τ)− α2)

− vv(T − τ)

r(τ)

(γ − cos(θ(τ)− α2)) tanγ θ(τ)−α2

2

sin2(θ(τ)− α2)

dθ(τ)

dτ

(A.7)

dr(T )

dτ
=

sin(θ(τ)− α2)

tanγ θ(τ)−α2

2

tanγ θ(T )−α2

2

sin(θ(T )− α2)

dr(τ)

dτ
+ r(τ)

tanγ θ(T )−α2

2

sin(θ(T )− α2)

cos(θ(τ)− α2)− γ
tanγ θ(τ)−α2

2

dθ(τ)

dτ

+ r(τ)
sin(θ(τ)− α2)

tanγ θ(τ)−α2

2

(γ − cos(θ(T )− α2)) tanγ θ(T )−α2

2

sin2(θ(T )− α2)

dθ(T )

dτ
]

(A.8)

Substituting equations (A.6) and (A.7) into equation (A.8),

dr(T )

dτ

=
vv

r(τ) sin(θ(τ)− α2)

[
r(T ) sin(θ(τ)− α1)[γ − cos(θ(τ)− α2)]

− r(T ) sin(θ(τ)− α2)[γ − cos(θ(τ)− α1)]

− r(τ) sin(θ(τ)− α1)[γ − cos(θ(T )− α2)]

+ r(τ) sin(θ(τ)− α2)[γ − cos(θ(T )− α2)]

− vv(T − τ) sin(θ(τ)− α2)[γ − cos(θ(T )− α2)][γ − cos(θ(τ)− α1)]

+ vv(T − τ) sin(θ(τ)− α1)[γ − cos(θ(T )− α2)][γ − cos(θ(τ)− α2)]
]

=
vv

r(τ) sin(θ(τ)− α2)

[
K1 sin(θ1 − α2)−K2 sin(θ1 − α1)

]
where K1 = r(τ)(γ− cos(θ(T )−α2))− vv(T − τ)(γ− cos(θ(τ)−α1))(γ− cos(θ(T )−α2))−

r(T )(γ− cos(θ(τ)−α1)),K2 = r(τ)(γ− cos(θ(T )−α2))− vv(T − τ)(γ− cos(θ(τ)−α2))(γ−

cos(θ(T )− α2))− r(T )(γ − cos(θ(τ)− α2))

As we assumed that α2 ∈ [θ(τ)− π, θ(τ)), θ(τ)− α2 ∈ [0, π], hence sin(θ(τ)− α2) ≥ 0.

Consider the part Ftriangleq =
K1 sin(θ(τ)− α2)−K2 sin(θ(τ)− α1)

r(τ)
.

F = 2 sin
α1 − α2

2

[
(A+ γ −Aγ − cos(θ(T )− α2)) cos

θ(τ)− α1

2
cos

θ(τ)− α2

2

+(A− γ +Aγ + cos(θ(T )− α2)) sin
θ(τ)− α1

2
sin

θ(τ)− α2

2

] (A.9)

where A =
r(T ) + vv(T − τ)(γ − cos(θ(T )− α2))

r(τ)
. As we assume that γ− cos(θ(T )−α2) >

0, it implies that 0 < A < 1.
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Then what we need to prove is that both A−γ+Aγ+ cos(θ(T )−α2) and A+γ−Aγ−

cos(θ(T )− α2) are nonnegative.

For A− γ +Aγ + cos(θ(T )− α2), we have

A+ γ −Aγ − cos(θ(T )− α2)

= (1−A)γ − cos(θ(T )− α2) +A cos(θ(T )− α2) +A(1− cos(θ(T )− α2))

= (1−A)(γ − cos(θ(T )− α2)) +A(1− cos(θ(T )− α2)) > 0

(A.10)

Now that 0 < A < 1, cos(θ(T )− α2) < 1 and γ − cos(θ(T )− α2) > 0, we can conclude that

A+ γ −Aγ − cos(θ(T )− α2) > 0.

On the other hand, we can obtain

A− γ +Aγ + cos(θ(T )− α2)

= (1 + γ)
r(T ) + vv(T − τ)(γ − cos(θ(T )− α2))

r(τ)
+ (cos(θ(T )− α2)− γ)

= (γ + 1)
r(T ) + vv(T − τ)(γ − cos(θ(T )− α2))

r(τ)
− (γ − cos(θ(T )− α2))

=
(γ + 1)r(T ) + (vv(T − τ)(γ + 1)− r(τ))(γ − cos(θ(T )− α2))

r(τ)

=
(1 + cos(θ(T )− α2))r(T ) + (r(T ) + vv(T − τ)(γ + 1)− r(τ))(γ − cos(θ(T )− α2))

r(τ)
(A.11)

As r(T ) + vv(T − τ)(γ + 1)− r(τ) ≥ r(T ) + vv(T − τ)(γ − cos(θ(T )− α2))− r(τ) > 0 and

γ − cos(θ(T )− α2) > 0, A− γ +Aγ + cos(θ(T )− α2) > 0.

Above all,
dr(T )

dτ
> 0 when α1 ≥ α2 and < 0, otherwise.

A.8 Proof of Lemma 2.5

For the minimum relative distance in the first stage, the result is actually same as in the

direct heading case. The minimum distance is independent with the turn time.

For the minimum relative distance in the second stage, the minimum relative distance

occurs when θ2(t)− α2 = arccos γ. Then

r̄(γ) =
r(τ) sin(θ(τ)− α2)

tanγ θ(τ)−α2

2

tanγ arccos γ
2

sin(arccos γ)
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Let c ,
tanγ arccos γ

2

sin(arccos γ
),

dr̄(γ)

dτ

=c
sin(θ(τ)− α2)

tanγ θ(τ)−α2

2

dr(τ)

dτ
+ cr(τ)

cos(θ(τ)− α2)− γ
tanγ θ(τ)−α2

2

dθ(τ)

dτ

=c
[sin(θ1 − α2)

tanγ θ1−α2
2

vv(cos(θ(τ)− α1)− γ) + r(τ)
cos(θ(τ)− α2)− γ

tanγ θ(τ)−α2

2

vv
sin(α1 − θ1)

r(τ)

]
=

vvc

tanγ θ(τ)−α2

2

[
(γ − cos(θ(τ)− α2)) sin(θ(τ)− α1)− (γ − cos(θ(τ)− α1)) sin(θ(τ)− α2)

]
=

vvc

tanγ θ(τ)−α2

2

[
2 sin

α1 − α2

2
(cos

α1 − α2

2
− γ cos(θ(τ)− α1 + α2

2
))
]

Now we only need to prove that cos
α1 − α2

2
− γ cos(θ(τ)− α1 + α2

2
) ≥ 0.

cos
α1 − α2

2
− γ cos(θ(τ)− α1 + α2

2
)

=
vvc

tanγ θ(τ)−α2

2

[
cos(

θ(τ)− α2

2
− θ(τ)− α1

2
)− γ cos(

θ(τ)− α1

2
+
θ(τ)− α2

2
)
]

=
vvc

tanγ θ(τ)−α2

2

[
(1− γ) cos

θ(τ)− α1

2
cos

θ(τ)− α2

2
+ (1 + γ) sin

θ(τ)− α1

2
sin

θ(τ)− α2

2

]

As all items are nonnegative, we can conclude cos
α1 − α2

2
− γ cos(θ(τ)− α1 + α2

2
) ≥ 0,

and thus
dr̄(γ)

dτ
≥ 0 when α1 > α2 and

dr̄(γ)

dτ
< 0 when α1 < α2.

A.9 Proof of Proposition 2.5

When γ > 1, r(t) is strictly decreasing during t ∈ [0, T ], and the sufficient and necessary

condition for a two-turn policy being feasible is r(T ; τ, α1, α2) ≥ R. With Lemma 2.4, we

can directly conclude the result.

When γ < 1, r(t) may be strictly decreasing during t ∈ [0, T ], or first decreasing and

then increasing. The condition is divided into two scenarios.

If γ− cos(θ(T ; τ, α1, α2)−α2) ≥ 0, r(t) will be decreasing on t ∈ [τ, T ]. If α1 > α∗ > α2,

we have r(t) > R during t ∈ [0, τ ] for any turn time τ . Therefore, the sufficient and

necessary condition is still r(T ; τ, α1, α2) ≥ R. The result holds same as the case γ > 1.

If α1 < α∗ < α2, γ − cos(θ(τ ; τ, α1, α2) − α1) ≤ 0 as well, which implies r(t) is decreasing

during t ∈ [0, T ] and thus the sufficient and necessary condition will be r(T ; τ, α1, α2) ≥ R.
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With Lemma 2.4, we can conclude that the vessel is safe before a specific τ and the result

holds.

On the other hand, if γ − cos(θ(T ; τ, α1, α2) − α2) < 0, which implies r(T ; τ, α1, α2) is

not critical for the vessel to be safe. If α1 > α∗ > α2, the vessel is always safe during

t ∈ [0, τ ]. Now that (τ, α1, α2) is feasible, (τ ′, α1, α2) is feasible as well since r̄(γ, τ, α1, α2)

of the second stage is increasing on τ . For the case of α1 < α∗ < α2, r(t) can only be

decreasing on t ∈ [0, τ ]. Therefore, r(τ ′) > r(τ) if τ ′ < τ . Meanwhile, the minimum relative

distance r̄(γ; τ, α1, α2) during the second stage is decreasing on τ . If r̄(γ; τ, α1, α2) does not

exist, it implies that r(t) is increasing during t ∈ [τ, T ] and the condition only depends on

the first stage and thus the result holds as α1 < α∗.

Therefore, the result holds.
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APPENDIX B

TECHNICAL SUPPORTS FOR CHAPTER IV

B.1 Proof of Theorem 4.1

.

To help prove the theorem, we define a new value function v̂i(Qi+1) where

v̂i(Qi+1) = −psiQi+1 + ERi+1,Si+1πi+1(Qi+1, Ri+1, Si+1)

The proof of the theorem is equivalent to proving the value function v̂i(Qi+1) is a concave

function on Qi+1 ∈
{ n∑
j=i+1

R̄j , · · · ,+∞
}

.

We will prove this by induction.

When i = n, v̂n(Qn+1) = −psnQn+1 + ERn+1,Sn+1Πn+1(Qn+1, Rn+1, Sn+1). Since the

feeder vessel will return to the hub port after port n to unload all the laden containers,

Πn+1(Qn+1, Rn+1, Sn+1) = 0. It implies that v̂n(Qn+1) = −pnQn+1, which is a concave

function

Now we assume that v̂i+1(Qi+2) is a concave function on Qi+2 ∈
{ n∑
j=i+2

R̄j , · · · ,+∞
}

.

We will prove that ˆvi(Qi+1) is a concave function. Since

v̂i(Qi+1) = −psiQi+1 + ERi+1,Si+1πi+1(Qi+1, Ri+1, Si+1)

= ERi+1,Si+1{−psiQi+1 + πi+1(Qi+1, Ri+1, Si+1)},

what we need to prove is now Πi+1(Qi+1, Ri+1, Si+1) is a concave function on Qi+1 for any

given Ri+1 = ri+1 and Si+1 = si+1. The maximal expected revenue at port i+ 1 with given

Qi+1, ri+1 and si+1 is

πi+1(Qi+1, ri+1, si+1) = max
Qi+2

vi(Qi+1, Qi+2, ri+2, si+2)

= max
Qi+2

pri+1ri+1 + psi+1Qi+1 + v̂i+1(Qi+2)

(B.1)

where Qi+2 ∈ {Qi+1 − ri+1 − si+1, · · · , Qi+1 − ri+1}.
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As v̂i+1(Qi+2) is concave, the optimal serving policy is adoptable for port i+ 1. Assume

Q∗i+2 maximizes v̂i+1(Qi+2), then

πi+1(Qi+1, ri+1, si+1)

=



pri+1ri+1 + psi+1Qi+1 + v̂i+1(Qi+1 − ri+1), if Qi+1 − ri+1 < Q∗i+2

pri+1ri+1 + psi+1Qi+1 + v̂i+1(Q∗i+2), if Q∗i+2 ≤ Qi+1 − ri+1 ≤ Q∗i+2 + si+1

pri+1ri+1 + psi+1Qi+1 + v̂i+1(Qi+1 − ri+1 − si+1), if Qi+1 − ri+1 > Q∗i+2 + si+1

(B.2)

On each interval, πi+1(Qi+1, ri+1, si+1) is concave. Now look at the forward difference

of πi+1(Qi+1, ri+1, si+1) when Q1
i+1 = Q∗i+2 + ri+1 and Q2

i+1 = Q∗i+2 + ri+1 + si+1. We have


πi+1(Q1

i+1, ri+1, si+1)− πi+1(Q1
i+1 − 1, ri+1, si+1) = psi+1 + v̂i+1(Q∗i+2)− v̂i+1(Q∗i+2 − 1)

πi+1(Q1
i+1 + 1, ri+1, si+1)− πi+1(Q1

i+1, ri+1, si+1) = psi+1
πi+1(Q2

i+1, ri+1, si+1)− πi+1(Q2
i+1 − 1, ri+1, si+1) = psi+1

πi+1(Q2
i+1 + 1, ri+1, si+1)− πi+1(Q2

i+1, ri+1, si+1) = psi+1 + v̂i+1(Q∗i+2 + 1)− v̂i+1(Q∗i+2)

As v̂i+1(Qi+2) is concave, it means

v̂i+1(Q∗i+2)− v̂i+1(Q∗i+2 − 1) ≥ 0 ≥ v̂i+1(Q∗i+2 + 1)− v̂i+1(Q∗i+2)

Hence, πi+1(Q1
i+1, ri+1, si+1) − πi+1(Q1

i+1 − 1, ri+1, si+1) ≥ πi+1(Q1
i+1 + 1, ri+1, si+1) −

πi+1(Q1
i+1, ri+1, si+1), and πi+1(Q2

i+1, ri+1, si+1)− πi+1(Q2
i+1 − 1, ri+1, si+1) ≥ πi+1(Q2

i+1 +

1, ri+1, si+1)− πi+1(Q2
i+1, ri+1, si+1).

Therefore, πi+1(Qi+1, ri+1, si+1) is a concave function on Qi+1 and so does v̂i(Qi+1).

B.2 Proof of Theorem 4.2

We still use v̂i(Qi+1) defined in above section to prove the result, and

v̂i(Qi+1) =− psiQi+1 + ERi+1,Si+1πi+1(Qi+1, Ri+1, Si+1)

ERi+1,Si+1{−psiQi+1 + πi+1(Qi+1, Ri+1, Si+1)}

For any given Ri+1 = ri+1 and Si+1 = si+1, by substituting equation B.2 into v̂i(Qi+1), we

have
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g(Qi+1) , −psiQi+1 + πi+1(Qi+1, ri+1, si+1) =

pri+1ri+1 + (psi+1 − psi )Qi+1 + v̂i+1(Qi+1 − ri+1), if Qi+1 − ri+1 < Q∗i+2

pri+1ri+1 + (psi+1 − psi )Qi+1 + v̂i+1(Q∗i+2), if Q∗i+2 ≤ Qi+1 − ri+1 ≤ Q∗i+2 + si+1

pri+1ri+1 + (psi+1 − psi )Qi+1 + v̂i+1(Qi+1 − ri+1 − si+1), if Qi+1 − ri+1 > Q∗i+2 + si+1

When psi < psi+1, g(Qi+1) is increasing on Qi+1 ∈ {Q∗i+2 + ri+1, · · · , Q∗i+2 + ri+1 + si+1}.

Now that g(Qi+1) is concave, we will have Q∗i+1 > Q∗i+2 + ri + si. As the result holds for

any ri+1 and si+1, we can conclude that Q∗i+1 > Q∗i+2.

When psi > psi+1, g(Qi+1) is decreasing on Qi+1 ∈ {Q∗i+2 + ri+1, · · · , Q∗i+2 + ri+1 + si+1}.

Therefore, Q∗i+1 < Q∗i+2 +ri+1 for any ri+1. We can thus conclude that Q∗i+1 < Q∗i+2 +R̄i+1.

B.3 Proof of Lemma 4.2

According to the definition, for any given x1, x2 ∈ S1, there exist y1 and y2 ∈ S2 such that

f(x1, y1) = g(x1) and f(x2, y2) = g(x2)

To prove that g(x) is a discretely concave function, we need to show that for any

α ∈ (0, 1), it holds that

max
u∈N(z)

g(u) ≥ αg(x1) + (1− α)g(x2)

where z = αx1 + (1− α)x2.

Note that

αg(x1) + (1− α)g(x2) = αf(x1, y1) + (1− α)f(x2, y2)

≤ max
u1∈N(αx1+(1−α)x2),u2∈N(αy1+(1−α)y2)

f(u1, u2)

≤ max
u1∈N(αx1+(1−α)x2),u2∈S2

f(u1, u2)

= max
u1∈N(αx1+(1−α)x2)

max
u2∈S2

f(u1, u2)

= max
u1∈N(αx1+(1−α)x2)

g(u1).

(B.3)

Hence, g(x) is a discretely concave function according to the definition.
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B.4 Proof of Theorem 4.3

We will prove the result by induction.

When i = n, we have

πn(Qpn, Q
d
n, rn, sn, dn, en) = (prn − psn)rn + (pdn − pen)dn + psnQ̂

p
n + penQ̂

d
n

vn(Qpn, Q
d
n, Q

p
n+1, Q

d
n+1, rn, sn, dn, e)

=(prn − psn)rn + (pdn − pen)dn + psnQ
p
n + (psn + pen)Qdn − psnQpn − (psn + pen)Qdn

where Q̂dn = min{Qdn, dn + en} and Q̂pn = min{Qpn + Q̂dn, rn + sn}. We are able to check the

discretely concavity by definition.

Now we assume that the result holds for i+1, which means vi+1(Qpi+1, Q
d
i+1, Q

p
i+2, Q

d
i+2,

ri+1, si+1, di+1, ei+1) and πi+1(Qpi+1, Q
d
i+1, ri+1, si+1, di+1, ei+1) are discretely concave func-

tion for any given (ri+1, si+1, di+1, ei+1).

Then

vi(Q
p
i , Q

d
i , Q

p
i+1, Q

d
i+1, ri, si, di, ei)

=(pri − psi )ri + (pdi − pei )di + psiQ
p
i + (psi + pei )Q

d
i − psiQ

p
i+1 − (psi + pei )Q

d
i+1 + hi(Q

p
i+1, Q

d
i+1)

is discretely concave function for any (ri, si, di, ei).

From Lemma 4.2, we have that πi(Q
p
i , Q

d
i , ri, si, di, ei) is discretely concave function as well.

B.5 Proof of Lemma 4.3

Firstly, we define the following function.

v̂i(Q
p
i+1, Q

d
i+1) = −psiQ

p
i+1 − (psi + pei )Q

d
i+1 + hi(Q

p
i+1, Q

d
i+1).

Then v̂i(Q
p
i+1, Q

d
i+1) is a discretely concave function on (Qpi+1, Q

d
i+1).

To prove the result, it suffices to prove that v̂i(Q
p
i+1 + 1, Qdi+1 − 1) − v̂i(Qpi+1, Q

d
i+1) ≤

v̂i(Q
p
i+1, Q

d
i+1)− v̂i(Qpi+1 − 1, Qdi+1 + 1), which is equivalent to

v̂i(Q
p
i+1 + 1, Qdi+1 − 1) + v̂i(Q

p
i+1 − 1, Qdi+1 + 1) ≤ 2v̂i(Q

p
i+1, Q

d
i+1).

Since v̂i(Q
p
i+1, Q

d
i+1) is discretely concave on (Qpi+1, Q

d
i+1), we have

1

2
v̂i(Q

p
i+1 + 1, Qdi+1 − 1) +

1

2
v̂i(Q

p
i+1 − 1, Qdi+1 + 1) ≤ max

u1∈N(Qpi+1),u2∈N(Qdi+1)
v̂i(u1, u2)
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while max
u1∈N(Qpi+1),u2∈N(Qdi+1)

v̂i(u1, u2) = v̂i(Q
p
i+1 + 1, Qdi+1 − 1). Hence, v̂i(Q

p
i+1, Q

d
i+1) is

concave on Qpi+1.

We can conclude v̂i(Q
p
i+1, Q

d
i+1) is concave on Qdi+1 with the same method.

B.6 Proof of Lemma 4.4

We slightly change the notation here by using πi(Q
p
i , Q

d
i , ĉ) for simple presentation.

Here πi(Q
p
i , Q

d
i , ĉ) = max

Qpi+1

(pri − psi )ri + (pdi − pei )di + psiQ
p
i + (psi + pei )Q

d
i + v̂i(Q

p
i+1, Q

d
i+1),

and let (Qp∗i+1(ĉ), Qd∗i+1(ĉ)) denote the optimal solution when Qpi+1 + Qdi+1 = ĉ (note that

(Qp∗i+1, Q
d∗
i+1) can be different from (Qpi+1(ĉ), Qdi+1(ĉ))).

There are four cases that we need to consider:

i) Qp∗i+1(ĉ+1) = Qp∗i+1(ĉ)⇒ Qd∗i+1(ĉ+1) = Qd∗i+1(ĉ)+1, Qp∗i+1(ĉ−1) = Qp∗i+1(ĉ)⇒ Qd∗i+1(ĉ−1) =

Qd∗i+1(ĉ)− 1.

Now the forward difference will be

πi(Q
p
i , Q

d
i , ĉ+1)−πi(Qpi , Qdi , ĉ) = −(psi +pei )+hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ)+1)−hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ))

and

πi(Q
p
i , Q

d
i , ĉ)−πi(Q

p
i , Q

d
i , ĉ−1) = −(psi +pei )+hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ))−hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ)−1)

Hence πi(Q
p
i , Q

d
i , ĉ+1)−πi(Qpi , Qdi , ĉ) ≤ πi(Q

p
i , Q

d
i , ĉ)−πi(Q

p
i , Q

d
i , ĉ−1) due to the concavity

on Qdi+1.

ii) Qp∗i+1(ĉ + 1) = Qp∗i+1(ĉ) + 1 ⇒ Qd∗i+1(ĉ + 1) = Qd∗i+1(ĉ), Qp∗i+1(ĉ − 1) = Qp∗i+1(ĉ) − 1 ⇒

Qd∗i+1(ĉ− 1) = Qd∗i+1(ĉ).

Now the forward difference is

πi(Q
p
i , Q

d
i , ĉ+ 1)− πi(Qpi , Qdi , ĉ) = −psi + hi(Q

p∗
i+1(ĉ) + 1, Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ))

and

πi(Q
p
i , Q

d
i , ĉ)− πi(Q

p
i , Q

d
i , ĉ− 1) = −psi + hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ)− 1, Qd∗i+1(ĉ))

Hence πi(Q
p
i , Q

d
i , ĉ+1)−πi(Qpi , Qdi , ĉ) ≤ πi(Q

p
i , Q

d
i , ĉ)−πi(Q

p
i , Q

d
i , ĉ−1) due to the concavity

on Qdi+1.

iii) Qp∗i+1(ĉ + 1) = Qp∗i+1(ĉ) ⇒ Qd∗i+1(ĉ + 1) = Qd∗i+1(ĉ) + 1, Qp∗i+1(ĉ − 1) = Qp∗i+1(ĉ) − 1 ⇒

Qd∗i+1(ĉ− 1) = Qd∗i+1(ĉ).

Now the forward difference is
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πi(Q
p
i , Q

d
i , ĉ+1)−πi(Qpi , Qdi , ĉ) = −(psi +pei )+hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ)+1)−hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ))

and

πi(Q
p
i , Q

d
i , ĉ)− πi(Q

p
i , Q

d
i , ĉ− 1) = −psi + hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ)− 1, Qd∗i+1(ĉ))

iv) Qp∗i+1(ĉ+ 1) = Qp∗i+1(ĉ) + 1⇒ Qd∗i+1(ĉ+; 1) = Qd∗i+1(ĉ), Qp∗i+1(ĉ− 1) = Qp∗i+1(ĉ)⇒ Qd∗i+1(ĉ−

1) = Qd∗i+1(ĉ)− 1.

Now the forward difference is

πi(Q
p
i , Q

d
i , ĉ+ 1)− πi(Qpi , Qdi , ĉ) = −psi + hi(Q

p∗
i+1(ĉ) + 1, Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ))

and

πi(Q
p
i , Q

d
i , ĉ)−πi(Q

p
i , Q

d
i , ĉ−1) = −(psi +pei )+hi(Q

p∗
i+1(ĉ), Qd∗i+1(c))−hi(Qp∗i+1(c), Qd∗i+1(ĉ)−1)

If we assume that πi(Q
p
i , Q

d
i , ĉ + 1) − πi(Qpi , Qdi , ĉ) > πi(Q

p
i , Q

d
i , ĉ) − πi(Q

p
i , Q

d
i , ĉ − 1),

we will have

hi(Q
p∗
i+1(ĉ) + 1, Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉs), Qd∗i+1(ĉ))

>− pei + hi(Q
p∗
i+1(ĉ), Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ)− 1)

The submodularity implies that

hi(Q
p∗
i+1(ĉ) + 1, Qd∗i+1(ĉ)− 1)− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ)− 1)

≥hi(Qp∗i+1(ĉ) + 1, Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ))

Therefore,

(Qp∗i+1(ĉ) + 1, Qd∗i+1(ĉ)− 1)− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ)− 1)

>− pei + hi(Q
p∗
i+1(ĉ), Qd∗i+1(ĉ))− hi(Qp∗i+1(ĉ), Qd∗i+1(ĉ)− 1)

which means

pei + hi(Q
p∗
i+1(ĉ) + 1, Qd∗i+1(ĉ)− 1) + hi(Q

p∗
i+1(ĉ), Qd∗i+1(ĉ)) > 0.

This inequality means that (Qp∗i+1(ĉ)+1, Qd∗i+1(ĉ)−1) is better than (Qp∗i+1(ĉ), Qd∗i+1(ĉ)) given

Qpi+1 +Qdi+1 = ĉ, which is a contradiction with the fact (Qp∗i+1(ĉ), Qd∗i+1(ĉ)) is optimal.

Above all, we have the inequality that πi(Q
p
i , Q

d
i , ĉ+ 1)−πi(Qpi , Qdi , ĉ) ≤ πi(Q

p
i , Q

d
i , ĉ)−

πi(Q
p
i , Q

d
i , ĉ − 1) for any ĉ and any ri, si, di, ei. And thus πi(Q

p
i , Q

d
i , ri, si, di, ei) is concave

on ĉ for any ri, si, di, ei.
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B.7 Proof of Theorem 4.5

This can be concluded directly from the concavity on ĉ for given (Qpi , Q
d
i ) and the optimal

solution is c∗. For given (Qpi , Q
d
i ), πi(Q

p
i , Q

d
i , ri, si, di, ei) is increasing on {· · · , c∗−1, c∗} and

decreasing on {c∗, c∗ + 1, · · · }. Meanwhile, ĉ is reduced only by collecting laden container.

Therefore, when ĉ ≤ c∗, we have xs∗i = 0. On the other hand, if ĉ ≥ c∗ + si, then

xs∗i = si if Qpi + di + xe∗i − ri − si ≥
n∑

j=i+1
R̄j and xs∗i = Qpi + di + xe∗i − ri − si −

n∑
j=i+1

R̄j

if Qpi + di + xe∗i − ri − si ≤
n∑

j=i+1
R̄j . However, if Qpi + di + xe∗i − ri − si ≤

n∑
j=i+1

R̄j ,

then xs∗i can be increased by increasing xe∗i , hence, we conclude that xe∗i = ei. Therefore,

xs∗i = Li , Qpi + di + ei− ri−
n∑

j=i+1
R̄j when Qpi + di + ei− ri− si ≤

n∑
j=i+1

R̄j . And xs∗i = si

when Qpi + di + ei− ri− si >
n∑

j=i+1
R̄j . After deciding xs∗i , the optimal remaining capacities

can be found by Lemma 4.4.

B.8 Proof of Lemma 4.5

Since hi(Q
p
i+1, Q

d
i+1) is a submodular function on (Qpi+1, Q

d
i+1), we can conclude Qpi+1(k +

1) ≤ Qpi+1(k) directly due to the property of decreasing difference. Hence, we only need to

discuss the case Qpi+1(k + 1) ≥ Qpi+1(k)− 1. This is equivalent to proving that

hi(Q
p
i+1(k)− 1, k + 1)− hi(Qpi+1(k)− 2, k + 1) > psi .

Now that Qpi+1(k) is the optimal solution given Qdi+1 = k, we have

hi(Q
p
i+1(k), k)− hi(Qpi+1(k)− 1, k) > psi .

Compare the two casesQdi+1 = k andQdi+1 = k+1. There would be only two possibilities,

either same delivery decision or one more delivery in case k + 1.

For the case of same delivery decision, hi(Q
p
i+1(k)− 1, k+ 1)− hi(Qpi+1(k)− 2, k+ 1) =

hi(Q
p
i+1(k)− 1, k)− hi(Qpi+1(k)− 2, k), which is greater than hi(Q

p
i+1(k), k)− hi(Qpi+1(k)−

1, k) > psi .

For the case of one more delivery in case k + 1, hi(Q
p
i+1(k) − 1, k + 1) − hi(Qpi+1(k) −

2, k + 1) = hi(Q
p
i+1(k), k)− hi(Qpi+1(k)− 1, k) ≥ psi .
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Therefore, we can conclude that hi(Q
p
i+1(k)− 1, k+ 1)−hi(Qpi+1(k)− 2, k+ 1) ≥ psi and

hence, Qpi+1(k + 1) ∈ {Qpi+1(k)− 1, Qpi+1(k)}.

B.9 Proof of Theorem 4.6

Given (Qpi , Q
d
i , ri, si, di, ei), we slightly change the notation by replacing πi(Q

p
i , Q

d
i , ri, si, di, ei)

into πki if the remaining number of empty containers is k. Then we have

πki = (pri − psi )ri + (pdi − pei )di + psiQ
p
i + (psi + pei )Q

d
i − psiQ

p
i+1 − (psi + pei )k + hi(Q

p
i+1, k).

Thereafter,

πki −πk−1
i = −(psi +pei )+psiQ

p
i+1(k)+psiQ

p
i+1(k−1)+hi(Q

p
i+1(k), k)−hi(Qpi+1(k−1), k−1).

Let Qp∗i+1(k) denote the optimal remaining available space by solving (4.9). There are

two situations where Qp∗i+1(k) = Qp∗i+1(k − 1) or Qp∗i+1(k) = Qp∗i+1(k − 1)− 1.

Consider Qp∗i+1(k) = Qp∗i+1(k − 1) first.

If both case k and case k − 1 could achieve Qp∗i+1(k), then

πki − πk−1
i = (−psi + pei ) + hi(Q

p∗
i+1(k), k)− hi(Qp∗i+1(k), k − 1)

Due to the optimality condition, hi(Q
p∗
i+1(k), k) ≥ psi + hi(Q

p∗
i+1(k)− 1, k). Hence,

πki − πk−1
i ≥ −pei + hi(Q

p∗
i+1(k)− 1, k)− hi(Qp∗i+1(k), k − 1).

When k < Qd∗i+1, we can conclude −pei + hi(Q
p∗
i+1(k) − 1, k) − hi(Qp∗i+1(k), k − 1) ≥ 0 from

Lemma 4.3 and thus πki − π
k−1
i > 0.

When k > Qd∗i+1, with the optimality condition, we have hi(Q
p∗
i+1(k), k − 1) ≥ psi +

hi(Q
p∗
i+1(k) + 1, k − 1). Therefore,

piki − πk−1
i ≤ −pei + hi(Q

p∗
i+1(k), k)− hi(Qp∗i+1(k) + 1, k − 1).

As −pei + hi(Q
p∗
i+1(k), k)− hi(Qp∗i+1(k) + 1, k − 1) ≤ 0, we have piki − π

k−1
i ≤ 0.

Otherwise, the feeder vessel will collect the same number of laden containers, which

means Qpi+1(k − 1) = Qpi+1(k) + 1. So we have

πki − πk−1
i = −pei + hi(Q

p
i+1(k), k)− hi(Qpi+1(k) + 1, k − 1).
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From Lemma 4.3, we will have πki − π
k−1
i


≥ 0, if k < Qd∗i+1

≤ 0, if k > Qd∗i+1

.

Now, consider Qp∗i+1(k) = Qp∗i+1(k − 1) − 1. At this time, the decisions to collect laden

containers in case k and case k − 1 will always be same. It is same as the above case and

thus the result holds.

B.10 Proof of Theorem 4.7

We simply use πi(Q
p
i , Q

d
i ) instead of πi(Q

p
i , Q

d
i , ri, si, di, ei) since the result need hold for

any ri, si, di, ei. Then to prove πi(Q
p
i , Q

d
i ) is submodular on (Qpi , Q

d
i ), we need to prove that

πi(Q
p
i + 1, Qdi )− πi(Q

p
i , Q

d
i ) ≥ πi(Q

p
i + 1, Qdi + 1)− πi(Qpi , Q

d
i + 1).

It is easy to check that πn(Qpn, Qdn) is submodular function on (Qpn, Qdn) for any rn, sn, dn, en.

Now assume πi+1(Qpi+1, Q
d
i+1) is submodular function on (Qpi+1, Q

d
i+1) for any ri+1, si+1, di+1, ei+1.

Hence, hi(Q
p
i+1, Q

d
i+1) is submodular function on (Qpi+1, Q

d
i+1).

Let xA and xB denote the optimal amount of empty containers to be delivered if the

capacity is (Qpi +1, Qdi ) and (Qpi , Q
d
i ). We can easily conclude that xA = xB or xA = xB−1.

The left hand side is then equivalent to

peixA + πi(Q
p
i + xA + 1, Qdi − xA)− peixB − πi(Q

p
i + xB, Q

d
i − xB).

If the capacity is (Qpi + 1, Qdi + 1), the optimal amount of empty container will be either

xA or xA + 1. If the capacity is (Qpi , Q
d
i + 1), the optimal amount of empty container will

be either xB or xB + 1. The right hand can thus be divided into four scenarios.

For the case of xA and xB occur, the right hand side will be

peixA + πi(Q
p
i + xA + 1, Qdi − xA + 1)− peixB − πi(Q

p
i + xB, Q

d
i − xB + 1).

For the case of xA + 1 and xB + 1 occur, the right hand side will be

pei (xA + 1) + πi(Q
p
i + xA + 2, Qdi − xA)− pei (xB + 1)− πi(Qpi + xB + 1, Qdi − xB).

For the case of xA + 1 and xB occur, the right hand side will be

pei (xA + 1) + πi(Q
p
i + xA + 2, Qdi − xA)− peixB − πi(Q

p
i + xB, Q

d
i − xB + 1).
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For the case of xA and xB + 1, the right hand hand will be

peixA + πi(Q
p
i + xA + 1, Qdi − xA + 1)− pei (xB + 1)− πi(Qpi + xB + 1, Qdi − xB).

We discuss the above four cases one by one. We start with XA = XB. At this time,

Pr(xA + 1, xB occurs) = 0. Therefore, we do not need to consider the third case here.

The left hand side is then

πi(Q
p
i + xA + 1, Qdi − xA)− πi(Qpi + xA, Q

d
i − xA).

The right hand side in the first case will be peixA+πi(Q
p
i +xA+1, Qdi −xA+1)−peixB−

πi(Q
p
i + xB, Q

d
i − xB + 1) = πi(Q

p
i + xA + 1, Qdi − xA + 1)− πi(Qpi + xA, Q

d
i − xA + 1).

Let Qp∗i+1 and Q̂p∗i+1 denote the optimal remaining capacity for the collection when the

remaining capacity for the delivery is Qdi+1 − xA and Qdi+1 − xA + 1, respectively. Here, we

know that Q̂p∗i+1 = Qp∗i+1 or Qp∗i+1 − 1.

If Q̂p∗i+1 = Qp∗i+1, the number of laden containers the vessel will collect will be the same

for the left hand side and the right hand side. And we can conclude that the right hand

side is less than the left hand side due to the concavity.

Next, consider if Q̂p∗i+1 = Qp∗i+1−1. If the left hand side and right hand side both achieve

the optimal remaining capacity for the collection, then it will be equivalent to psi = psi . If no

case achieves the optimal remaining capacity, it means the decision will be on ri or ri + si

and we and thus conclude the the left hand side is greater than the right hand side due to

the submodularity. If (Qpi + xA, Q
d
i − xA + 1) can achieve the optimal remaining capacity

by collecting all laden containers, then only case (Qpi +xA+ 1, Qdi −xA+ 1) can not achieve

the optimal remaining capacity. Therefore, the left hand side is psi and the right hand side

is hi(Q
p∗
i+1, Q

d
i − xA + 1) − hi(Qp∗i+1, Q

d
i − xA + 1). The left hand side is greater than the

right hand side due to the optimality condition that Qp∗i+1 − 1 is the optimal solution given

remaining capacity for delivery being Qdi − xA + 1. Therefore, the left hand side is always

greater than the right hand side.

The second case is pei (xA + 1) + πi(Q
p
i + xA + 2, Qdi − xA)− pei (xB + 1)− πi(Qpi + xB +

1, Qdi − xB) = πi(Q
p
i + xA + 2, Qdi − xA)− πi(Qpi + xA + 1, Qdi − xA), which is less than the

left hand side due to the concavity.
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The fourth case is peixA + πi(Q
p
i + xA + 1, Qdi − xA + 1) − pei (xB + 1) − πi(Qpi + xB +

1, Qdi − xB) = −pei + πi(Q
p
i + xA + 1, Qdi − xA + 1)− πi(Qpi + xA + 1, Qdi − xA). Since xA + 1

is the optimal solution if the capacity is (Qpi , Q
d
i + 1), pei + πi(Q

p
i + xA + 1, Qdi − xA) −

πi(Q
p
i + xA, Q

d
i − xA + 1) ≥ 0, which implies that πi(Q

p
i + xA + 1, Qdi − xA + 1)− πi(Qpi +

xA, Q
d
i − xA + 1) ≥ −pei + πi(Q

p
i + xA + 1, Qdi − xA + 1)− πi(Qpi + xA + 1, Qdi − xA). Now

that πi(Q
p
i +xA + 1, Qdi −xA + 1)−πi(Qpi +xA, Q

d
i −xA + 1) is less than the left hand side,

peixA + πi(Q
p
i + xA + 1, Qdi − xA + 1)− pei (xB + 1)− πi(Qpi + xB + 1, Qdi − xB) is less than

the left hand side.

Applying same method if xA = xB − 1, we will still have the left hand side is greater

than the right hand side.

The left hand side is equivalent to

−pei + πi(Q
p
i + xA + 1, Qdi − xA)− πi(Qpi + xA + 1, Qdi − xA − 1).

The first case will be peixA+πi(Q
p
i+xA+1, Qdi−xA+1)−peixB−πi(Q

p
i+xB, Q

d
i−xB+1) =

−pei + πi(Q
p
i + xA + 1, Qdi − xA + 1)− πi(Qpi + xA + 1, Qdi − xA). We can conclude that the

left hand side is greater than the right hand side due to the concavity.

The second case is then −pei + πi(Q
p
i + xA + 2, Qdi − xA)− πi(Qpi + xA + 2, Qdi − xA− 1).

We can conclude the left hand side is greater same as the first case when xA = xB.

The third case is then πi(Q
p
i + xA + 2, Qdi − xA) − πi(Q

p
i + xA + 1, Qdi − xA). Due

to the concavity, πi(Q
p
i + xA + 2, Qdi − xA) − πi(Qpi + xA + 1, Qdi − xA) ≤ πi(Q

p
i + xA +

1, Qdi − xA) − πi(Q
p
i + xA, Q

d
i − xA). Since xA is the optimal solution if the capacity

is (Qpi , Q
d
i ), we will have pei + πi(Q

p
i + xA + 1, Qdi − xA − 1) ≤ πi(Q

p
i + xA, Q

d
i − xA),

which implies that −pei + πi(Q
p
i + xA + 1, Qdi − xA) − πi(Q

p
i + xA + 1, Qdi − xA − 1) ≥

πi(Q
p
i + xA + 1, Qdi − xA)− πi(Qpi + xA, Q

d
i − xA). Therefore, the left hand side is greater

than the right hand side.

The probability of the fourth case is 0.

Therefore, the left hand side is greater than the right hand side.

Above all, the right hand side is less than the left hand side and πi(Q
p
i , Q

d
i ) is submodular

function on (Qpi , Q
d
i ).
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